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Abstract—The high usability of smartphones and tablets is
embraced by consumers as well as the corporate and public sector.
However, especially in the non-consumer area the factor security
plays a decisive role for the platform-selection process. All of
the current companies within the mobile device sector added a
wide range of security features to the initially consumer-oriented
devices (Apple, Google, Microsoft), or have dealt with security as
a core feature from the beginning (RIM, now Blackerry). One
of the key security features for protecting data on the device or
in device backups are encryption systems, which are available
in the majority of current devices. However, even under the
assumption that the systems are implemented correctly, there is a
wide range of parameters, specific use cases, and weaknesses that
need to be considered when deploying mobile devices in security-
critical environments. As the second part in a series of papers
(the first part was on i0S), this work analyzes the deployment
of the Android platform and the usage of its encryption systems
within a security-critical context. For this purpose, Android’s
different encryption systems are assessed and their susceptibility
to different attacks is analyzed in detail. Based on these results a
workflow is presented, which supports deployment of the Android
platform and usage of its encryption systems within security-
critical application scenarios.

I. INTRODUCTION

Data encryption represents a central concept of security-
critical applications. During the past years, data-encryption
mechanisms have been included in all major mobile device
platforms, such as iOS, Android, Windows Phone or Black-
berry. However, the deployed encryption systems differ in var-
ious security-related aspects. For instance, different platforms
rely on different approaches to encrypt data (file-based encryp-
tion vs. file-system based encryption) and implement different
methods to derive required encryption keys from user input
(e.g. PIN or passcodeq'). Furthermore, different platforms offer
developers, administrators and end users different options to
use and configure provided encryption features.

This raises several challenges, when the platform should be
deployed in a security-critical context. In this case, a security
analysis for a given mobile device platform must consider a
wide range of different security-related aspects. Even under the
assumption that built-in encryption systems and algorithms are
implemented correctly, there are still many other aspects that
can render the systems ineffective. Examples for such high-
level aspects are parameters related to system configuration,
application development, or the utilization of backup systems.
In fact, those higher-level aspects play a vital role when
deploying a mobile platform within a security-critical context.

I'Subsequently, we will refer to PIN and passcodes with the term passcode.

The topic of data encryption on mobile platforms has
already been approached from different points of view by
various authors. The importance of encryption solutions for
mobile devices and possible implications on jurisdiction have
been discussed in [1l]. Proprietary encryption solutions for
smartphone platforms have for instance been proposed in [2]
and [3]]. Interestingly, most related work on encryption systems
for mobile devices does not focus on encryption systems that
are already included into the platform, but on the development
of proprietary solutions.

This also applies to the popular Android platform. While
there are several papers on proprietary encryption solutions for
Android-based devices, related scientific work on Android’s
built-in encryption mechanisms is still rare. Despite publicly
available official information on the general design of the
Android encryption system“} only few papers have investigated
the security and reliability of Android’s encryption solution.
An interesting contribution to the evaluation of the robustness
of Android’s built-in encryption system has been provided by
Miiller et al. [4]]. In this paper, the authors show that protected
data can be retrieved from encrypted phones using cold boot
attacks. Representing a physical attack scenario, which reveals
protected data by reading it out directly from the RAM after
freezing the device, this approach however requires significant
effort.

Compared to the Apple iOS platform, whose encryption
features have for instance been investigated and discussed in
[S, [6l, or [7], Android’s encryption system has not been
subject to detailed assessments by the scientific community
so far. This seems reasonable at a first glance, as Android’s
encryption system is rather simple and provides less features
compared to the encryption system that is for instance inte-
grated into Apple’s iOS platform. Still, Android’s encryption
system needs to be well understood in order to be able to
assess its security and its capability to protect security-critical
data. This paper contributes to a deeper understanding of
Android’s encryption system by analyzing its core security
features and identifying strengths, potential weaknesses, and
possible attack scenarios. This way, this paper provides a solid
basis for deploying the Android platform also in security-
critical fields of application that require reliable data protection
by means of encryption. To assure to be close to reality
and to provide support for real-world scenarios, we assume
that cryptographic functions are implemented correctly and
put focus on high-level issues regarding passcode properties,
relations between different crypto systems, and the developer’s

Zhttps://source.android.com/devices/tech/encryption/android_crypto_
implementation.html
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and administrator’s role regarding the security of the deployed
systems.

The remainder of this paper is structured as follows.
In Section we define threats and assumptions, on which
we have based our analysis of Android’s encryption system.
Subsequently, we define common assessment criteria that are
used to systematically assess Android’s encryption systems in
Section[ITl} The different encryption systems are then discussed
and assessed in Section [[V] Furthermore, this section identifies
potential attack scenarios based on obtained assessment results.
Form the identified attack scenarios, a workflow is derived and
presented in Section This workflow supports a systematic
deployment of Android in security-critical scenarios.

II. THREATS AND ASSUMPTIONS

The presented security analysis is based on the general
scenario that a security officer of a company or public agency
is in charge of deploying the Android platform to allow em-
ployees to process and store security-critical data with mobile
Android devices. This is a common scenario, as mobile devices
are increasingly issued to employees, in order to improve
efficiency.

As mobile devices are much more likely to be subject to
loss or theft than classical computing devices such as desktop
PCs, theft is the main threat to be considered by the security
analysis presented in this paper. Another potential threat is
malware that is installed by an attacker on a mobile device
to spy on security-critical data. However, the focus is not
put on this threat for several reasons. First, according to the
underlying scenario, we can assume a controlled environment
and hence managed mobile device that is under control of a
mobile device management (MDM) solution. As for managed
devices the set of installed software can be controlled by
an administrator (or security officer), the risk of installed
malware can be neglected. Of course, also managed devices
are prone to highly sophisticated malware that exploits system
vulnerabilities to gain root access to the operating system.
However, this kind of malware must be assumed to have almost
unlimited capabilities, including the capability to circumvent
any encryption system and security feature in place. For these
reasons, this work mainly focuses on the identified threat theft.

Regarding the identified threat theft, several additional
assumptions apply. First, our assessments are based on the
assumption that the Android encryption algorithms are imple-
mented correctly. The goal of this assessment is to analyze
weaknesses located on a higher level, such as bad configura-
tions, weak passwords, limits of used key derivation functions,
or wrong assumptions in relation to the encryption scope (e.g.,
files vs. file-system). Second, we assume that a passcode-
locked Android device is stolen by an attacker who is an
expert with in-depth knowledge about the deployed encryption
systems and their weaknesses. This scenario is similar to the
one faced by a forensic expert who needs to analyze the data
stored on an Android device. In this context we also assume
that the attacker employs jailbreaking/rooting tools. This is the
only type of malware that will be considered in the conducted
analysis.

III. ASSESSMENT CRITERIA

The conducted assessment of Android’s encryption systems
has been basically based on two assessment criteria. These
criteria are discussed in this section in detail, in order to
motivate their inclusion in the conducted analysis process.

A. Key Derivation

The appropriate derivation of encryption keys is a crucial
aspect of any encryption system. This also applies to smart-
phone platforms, where key-derivation functions (KDF) are
used to derive encryption keys from some kind of securely
protected master key or from secret credentials entered by
the user. Thus, the used KDF represents the first assessment
criterion.

In general, key-derivation functions need to meet the fol-
lowing security requirements [8]]: First, the KDF must be
a deterministic function used to derive cryptographic keying
material from a secret value (e.g., a password). The KDF is
defined by the used PseudoRandom Function (PRF) (e.g., a
SHA-1 based HMAC) that is executed for multiple iterations.
Second, the key-derivation process should be rather slow, in
order to significantly slow down brute-force attacks. This can
be achieved by using a large number of iterations. Third,
a random salt (at least 128 bits) is required to allow the
generation of a large set of keys for a given password. Since
this value is randomly generated on each device, an attacker
cannot generate a table of possible keys prior to gaining access
to the device and the stored salt value.

Two wide-spread examples for KDFs are the PBKDF2 [9]
and SCRYPT functions [10]]. Typically, KDFs are based on
a common design. They take as input a random salt value, a
passcode defined by the user, and/or a master key provided
by a hardware element. While the salt input is obligatory,
reliance on the user input and on a hardware-protected key
actually depends on the particular implementation. The chosen
input parameters for the used KDF directly influence the
security of the derived keys and hence the overall security
of the encryption system. Usually, the derived key is not
directly used to encrypt the respective data, but only to protect
the actual data encryption key. This two-stage approach is
required to allow changing the passcode without the need
to re-encrypt the protected data. If a secret key provided
by a secure hardware element is incorporated into the key-
derivation process (e.g., as in the iOS encryption system [0]),
the key derivation is bound to the mobile device, as the
secret key cannot be extracted from the hardware element.
This means that brute-force attacks cannot be outsourced to
powerful external components, rendering the parallelization of
these attacks infeasible. Integration of a user-defined passcode
into the key-derivation process is also relevant in terms of
security. If the derived key depends on a device-specific key
only (e.g., provided by a secure hardware element), attackers
can easily circumvent any encryption system by taking over
control of the operating system (e.g., by employing known
vulnerabilities that enable the attacker to root or jailbreak the
device).



B. Configuration Capabilities

Configuration capabilities of a provided encryption system
represent another relevant assessment criterion. Depending on
the particular smartphone platform, encryption systems can be
configured by the developer of smartphone applications and/or
by the user during runtime.

Depending on the smartphone platform, encryption systems
might need to be manually activated by the user. In such cases,
the security and confidentiality of data being stored on the
mobile device must not be taken for granted. Configuration
properties defined by the user can also influence the security
of the keys that are used to encrypt data. For instance, if a
user-defined passcode is incorporated into the key-derivation
process, weak passcodes potentially compromise the security
of the entire encryption system.

Beside the user, also developers potentially need to con-
figure encryption systems correctly during the application-
development process. For instance, developers might be re-
sponsible to correctly configure and use encryption features
provided by the platform in their applications. This, in turn
raises the risk that design or implementation errors made by
the developer can negatively influence the security of an appli-
cation. The developer’s influence on the provided encryption
systems is hence another relevant assessment criterion for
the evaluation of encryption systems. In this context, also
the ease of integration needs to be analyzed, as complex
and difficult-to-integrate solutions increase the probability of
implementation errors in third-party applications that rely on
provided encryption systems.

IV. ANDROID ENCRYPTION SYSTEMS

Based on the assessment criteria defined above, Android’s
encryption systems are discussed and assessed in this section
to derive potential attack scenarios. Android offers two pri-
mary encryption systems: First a file-system based encryption
system that needs to be activated by the user/administrator,
and second the Android KeyChain, which can be employed
by the developer to store credentials used in an application in
a secure way on the file-system. Apart from these encryption
systems, the following analysis also discusses the various
backup facilities on the Android platform, and cloud-storage
components that directly or indirectly influence the security of
data protected by the encryption systems. Although the backup
system does not fall into the category of encryption systems,
the protection mechanisms (or their lack) are crucial when
deploying Android in security critical scenarios. An attacker
who might not be able to break the device encryption system
could still gain access to data by gaining access to backup files
on a laptop or by breaking into the user’s Google account.

A. File-System Encryption — Dm-crypt

The primary encryption system on Android is a file-system
based encryption system based on dm—crypﬂ which has been
available in Linux kernels since Version 2.6.x. The Android
file-system encryption has been introduced in Android 3.0,
which was solely used on tablets. This version has later
been adapted for smartphones and made available for those

3http://code.google.com/p/cryptsetup/wiki/DMCrypt

devices as Version 4.0. In Version 4.4, the employed KDF has
been changed, which improves the security level of the used
passcodes.

An overview of the encryption system is given in Figure
[[] The user is required to enter the passcode as the first step
in the Android boot process. The KDF is then used to derive
a symmetric key from the user’s passcode. This symmetric
key protects the actual file encryption master key which is at
the top of the key hierarchy required for the file-encryption
system. The encryption system must be activated manually by
the user, or be enforced by the corresponding MDM rule. The
activation of the system requires the user to set an encryption
passcode, which is also used for the phone’s lock screen. When
activating the encryption system, it is mandatory to activate the
passcode screen lock functionality. Other lock-screens, such as
the pattern lock functionality of the face-unlock system cannot
be used when file-system encryption is activated.

Key
derivation,

| File-system key |<—{ Derived key l

‘ﬁ

DM-CRYPT

PIN/Passcode

File 1

File 2

Application 1

Application 2 File 3

File 4

Application 3 File 5

Fig. 1: Overview of the Android dm-crypt based encryption system.
The whole file system is encrypted and the required file-system master
key is protected by a key derived from the user’s passcode.

1) Assessment: Regarding the first assessment criterion
(key derivation function), a distinction between Android 3.0 to
4.3, and 4.4 must be made. While 3.0 to 4.3 use the Password-
Based-Key-Derivation-Function 2 (PBKDF2) [9] with a SHA-
1 based HMAC to derive a symmetric key from the user’s
passcode, Android 4.4. employs the SCRYPT function [10],
which complicates parallel brute-force attacks by requiring
computational and memory intensive resources.

Android 3.0 to 4.3: The PBKDF2 derivation process
employs 2000 iterations to slow down possible brute-force
attacks. The input values for the key derivation process are
the user’s passcode and a random salt value (16 bytes). The
salt value is randomly generated during the activation of
the encryption process and eliminates the possibility for an
attacker to pre-calculate derived keys in order to speed-up the
attack.

Android 4.4: The default parameters used for the SCRYPT
function for the dm-crypt system are N =15, r=3, p=1,
where N influences the required CPU resources, r defines
the memory requirements and p influences the paralleliza-
tion cost [10]. This setting can be overwritten during the
Android build process by defining specific parameters in the
build.properties file. Since these parameters can there-
fore be adapted by the different device manufacturers, this
flexibility also results in different brute-force times and in
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different passcode properties that assure a secure encryption
environment.

Regarding the second assessment criterion (configuration
capabilities), it has to be stated that the Android file-system
encryption is not activated per default, and must either be
activated manually by the user, or be enforced by the respective
MDM rule. Apart from the activation of the encryption system,
the appropriate rule for defining passcode properties must
also be set by the administrator according to the security re-
quirements of the envisaged deployment scenario and the times
required to carry out a possible brute-force attack (discussed
in Section [[V-A2).

From a developer’s point of view, it is not possible to
influence the configuration of the encryption system. Due to
the requirement to manually activate the system, the developer
cannot assume that the Android system used to run the
application is protected by the file-system encryption system.
This is especially important for BYOD scenarios, where the
security of the system depends on the settings chosen by the
user and cannot be enforced by MDM.

2) Attack Scenarios: From the obtained assessment results,
several attack scenarios can be derived for Android’s file-based
encryption system. The first attack scenario is based on the fact
that Android’s encryption system must be activated by the user
manually or be enforced by the corresponding MDM rule. In
addition, the security of the system depends on the strength
of the passcode. Thus, the negligence to activate the system
or to chose weak passcode properties allow for attacks on the
encryption system when the device is stolen.

Another possible attack scenario targets the encryption sys-
tem’s KDF. The security of Android’s file-system encryption
system primarily depends on the length and the properties of
the user’s passcode used to derive the symmetric key, which
protects the actual file-system encryption keys. Android uses
a software-only architecture for encrypting the file-system.
Thus, the system is susceptible to external brute-force attacks,
where computationally expensive operations are outsourced to
powerful computing units. For concrete numbers, we again
need to distinguish between different Android versions.

Android 3.0 to 4.3: Since the KDF involves standard hash-
algorithms, optimimized implementations can be leveraged to
speed up the required calculations. In order to attach a price-
tag to brute-force attacks carried out on Android, we have

used the pricing model of the Amazon EC2 cloud computin

instances to calculate the costs for carrying out attacks on
passcodes with different length and properties. Thereby, two
scenarios have been evaluated: While the first scenario utilizes
calculations based on standard CPUs available within Amazon
cloud instances, the second scenario considers special Amazon
instances that employ GPUs that speed up the hash calculation
process. For the CPU scenario, obtained results of brute-force
times are presented in Table[[] In this table, only the prices for
the on-demand instances are considered, which — in contrast to
the reserved instances — do not require any upfront payments.
The table shows the brute-force times for different passcode
lengths and properties. Password complexities were arranged

4http://developer.android.com/guide/topics/admin/device-admin.html
Shttp://aws.amazon.com/ec2/

in the categories numerical, alphanumeric with lower case
characters only and alphanumeric with lower and uppercase
characters, and complex, which also includes symbols. The
brute-force times are calculated for 1 instance and 1000
instances. Thereby, Amazon describes the performance of
the instances by EC2 Compute Units (ECU)°| The price is
calculated by using the per-hour price for the on-demand
instances listed on the Amazon EC2 Web site (currently 0.06$
per ECUﬂ The time to derive one key from a passcode is
taken from the previously conducted measurements and is
approximately 17.5 ms for executing the PBKDF2 function
with 2000 iterations.

Lock- Brute-Force
Screen Number of Brule-Force  Days {1000
Tvpe Length Chars passcodes Days 1 instance instances]

Numerical 4 10
5 10
8 810,2
10 10 10000000000 21.018,5

Alphanum
10/26 letters 38 2178752336
38 78384184008
36 28211099074!

38 101550056868
36 365615844008

Alphanum B2 14776336
B2 916132832
B2 55800235584
62 352161460820|
B2 218240105584/
£2 135370865462

10752 letters

107 131079601
107 14025517307
107 150073035184)
107 160578147647
107 171818617983

Android Amazon CPU CPU Price

TABLE II: Passcode brute-force times for Android 4.4 SCRYPT key
derivation function. A huge improvement in security is observed.

For the GPU scenario, the brute-force time calculation is
based on a special Amazon instance that employs two NVIDIA
Tesla Fermi M2050 GPUs. Although we did not implement
a tool that carries out the brute-force attack on these GPUs,
a good estimation on the required time can be provided by
taking a closer look at the PBKDF2 function and the number
of required hash operations and the block size of the input
data. From the known number of required hash operations and
known performance numbers of Amazon GPU instances, the
results presented in the last three columns of TABLE [I] can
be derived. The prices are adapted to the price of one hour
instance time, which is currently at 2.1$ for an on-demand
instance.

Android 4.4: A similar brute-force attack has also been
implemented for the SCRYPT function. By using 1 ECU of
the Amazon EC2 system, we have been able to calculate the
times required to derive a key from a given passcode via the
SCRYPT function. The results are presented in Table |lIl Due
to the choice of the parameters, the time to derive one key
is approximately 710 ms. This is a 40-fold increase when
compared to the KDF used in Android 3.0 to 4.3. The level of
security is significantly improved even for shorter passcodes
as can be observed in Table

Shttp://aws.amazon.com/ec2/faqs/

"In practice, it is possible to save money by changing to more powerful
instances, for which prices do not grow linearly with the provided computing
power. For the sake of simplicity and comparability, all prices have however
been computed for the same instances.
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Lock-
Screen Number of Brute-Force
Type Length Chars passcodes Days

Numerical 4 10 10000
92.6
9,259.3

Brute-Force

1000000
100000000
10000000000

36 1679616
36 2176782336

Alphanum
10726 letters

36 78364164096 15,872.4
571,405.4
1.0156E+14 20,570,593.1

4
6
7
8 36 2.82111E+12
9
0

3.65616E+15

Alphanum 4 14776336
5 62 916132832

10/52 letters 6 62 56800235584 11,504.7
7 62 3.52161E+12 713,290.0
8 2.1834E+14 44,223,979.7
9 1.35371E+16 12,534,339,394.7

Complex 4 107 131079601
5 107 14025517307
6 107 1.50073E+12 1,389,565.1 303,967.4
7 107 1.60578E+14 148,683,470.0 32,524,509.1
8 107 1.71819E+16 [l 15,909,131,294.7 Jl 3,480,122,470.7

iOS on device

Brute-Force
Days (1000
Days 1 instance instances

740,541,350.7

Android Amazon CPU

Brute-Force
Days (1000

Brute-Force

15.9
571.4 ,823.7 746.3
20,570.6 26,867.7
740,541.4 967,237.7

37,614.8
1,354,132.8
48,748,779.2

46,954.9
2,911,201.4
180,494,487.3

57,761.9
3,581,239.8

437,713.0 0.4 20,009.7

46,835,293.1 42,481.0 42,5 2,141,042.0
3,480,122.5 5,011,376,357.8 4,545,466.1 4,545.5 229,091,490.6
CPU Price Android Amazon GPU GPU Price

TABLE I: Passcode brute-force times and costs: The passcode properties and number of possible combinations are listed in columns 1-4.
The i0S brute-force times are listed in the fifth column and are followed by the Android brute-force times and the price for CPU and GPU

instances (1 and 1000 instances).

B. Android KeyChain

The Android KeyChain is the second encryption system
offered by the Android operating system. It can be used
even when the primary file-system encryption system is not
activated. Android has implemented a low level credential store
since Version 1.6. This credential store is a system daemon,
providing its capabilities via a Unix socket interface. Until
Version 4.0, only system applications were able to use the
credential store for WiFi passwords or VPN credentials. In
Version 4.0, a new KeyChain AP]H was introduced, which
allows applications to use the credential store to store private
key material and certificate chains. The KeyChain API was
extended with hardware support in Android 4. llﬂ which offers
better protection for the stored keys, because they cannot
be extracted from the device. In Android 4.3, another im-
provement has been included: The KeyChain API can now
be used via the Java Cryptographic Extension (JCE) API,
which simplifies the usage of asymmetric keys in Android
applications. For the security analysis of the KeyChain, we
need to consider the differences between software-only and
hardware-based realizations.

The implementation [[11] of the keystore API reveals details
of the software- and hardware-based versions. For software-
based keystores, the user’s passcode is utilized to derive an
AES 128 bit key (16 bytes), which is then used to encrypt a
master key. When the credential store is unlocked, the plain
master key is stored in the memory of the credential store.
This master key is then used to encrypt and decrypt the stored
secret values. These values are stored by application id and
alias name as simple encrypted file. When hardware support
is available, the detailed protection mechanisms depend on
the specific implementation. However, in general the keys are
stored on the file system and are encrypted with a master

8http://developer.android.com/reference/android/security/KeyChain.html
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secret, which is only available within the trusted environment
offered by the hardware element. When the keys are used for a
cryptographic operation, they are fetched from the file system
and utilized by the specific operation (e.g., signing), which
is executed within the secure environment of the hardware
element. In addition, the passcode of the user is also used
for providing an additional protection layer. The key material
is also encrypted with the 128 bit AES master key, which is
itself protected by the key derived from the passcode.

1) Assesssment: Regardless of software-only, or hardware-
based protection, the PBKDF2 KDF with HMAC SHALI is
used to derive the AES key from the passcode. The derivation
process employs 8192 iterations. The master key file also
includes an MDS5 digest of the unencrypted master key. This
digest allows to verify whether the derived key and thus the
provided passcode is correct. If a software-only solution is
used, the decrypted master key is used to decrypt the keys that
are stored encrypted on the file system. In case of additional
hardware support, the key material is also decrypted with the
master key. However, due to the additional encryption layer
provided by the key within the hardware element, the key
material cannot be extracted and used off-device.

Regarding the assessment criterion configuration capa-
bilities, the user/administrator influences the security of the
KeyChain system (when used by an application) by choosing
the passcode for locking the Android device. Similar to the
file-system encryption system, the properties of this passcode
(length, complexity) can be defined by selecting appropriate
MDM rules. Also the developer is able to influence the security
of this encryption system by deciding for own applications
whether the KeyChain is used for storing the user’s credentials.

2) Attack Scenarios: Based on the obtained assessment
results, the following attack scenarios can be derived. Even
though the KeyChain cannot be directly configured, its security
is strongly influenced by the passcode chosen by the user. The
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strength of this passcode is determined by the requirements
set by the deployed MDM-system, or in a BYOD scenario
by the user’s choice. Weak MDM rules or user choices hence
represent an attack scenario. The developer needs to chose
whether the KeyChain is used for storing the credentials. Poor
developer choices (e.g., storing the credentials unencrypted on
the file system) can lead to critical security issues and hence
also represent an attack scenario.

Other attack scenarios target the KeyChain’s KDF. Basi-
cally, the KeyChain system is susceptible to the same brute-
force attack as described in Section However, certain
aspects need to be considered. The KDF uses 8192 itera-
tions (compared to 2000 PBKDEF2 iterations for the 4.0 to
4.3 dm-crypt system). However, in contrast to the dm-crypt
system, which generates 32 bytes (16 bytes key material, 16
bytes initialization vector), only 16 bytes are generated by
the KeyChain derivation function. By considering these two
differences it takes approximately the double amount of time
to derive one key, in comparison to the KDF employed in the
file-system encryption system. Thus, the brute-force times and
prices presented in Table [I] need to be multiplied by two in
order to get the appropriate values for the KeyChain. Thus,
for keystores with hardware support and software support, the
passcodes can be brute forced by using external ressources.
On software-based systems, the keys within the keystore can
then be extracted. While this is not possible for systems
with hardware support, the keys can still be used for crypto
operations on the device.

When the dm-crypt system is used to encrypt the file
system, the attacker cannot directly extract KeyChain related
files to carry out brute-force attacks. The attacker first needs
to apply the brute-force attack on the dm-crypt system. The
complexity of such an attack depends on the employed KDF
(PBKDF2 vs. SCRYPT). However, the KeyChain uses the
same passcode as the dm-crypt system and the screen-lock
function. This eliminates the need to carry out a second brute-
force attack, when the passcode for the dm-crypt system has
already been determined. Thus, the brute-force attack on the
KeyChain is only relevant for systems that are not encrypted
with the dm-crypt system.

C. Backup

Backup systems are not directly related to the encryption
systems offered by the Android system. Still, backup mech-
anisms must be considered for security-critical deployment
scenarios as an attacker might not need to circumvent the
encryption systems, but directly access the data contained in
non-protected backups.

The Android system offers two primary backup systems
that are integrated within the Android operating system: First,
the Android Backup Service, which allows application devel-
opers to implement backup facilities within their applications
and store data on Google servers, and second, the ADB
Backup component, which uses the Android Debug Bridge
(ADB) to create complete system backups. As our analysis
focuses on managed devices, it can be assumed that developer
mode, which is a prerequisite for the ADB backup, is not
activated. In managed scenarios, developer mode can either
be deactivated through appropriate MDM rules or prevented

by organizational means. Hence, we regard the ADB backup
mechanism to be out of scope and solely focus on the Android
Backup Service for this analysis.

Apart from the two standard backup systems mentioned
above, device manufactures might implement their own backup
services or extend the existing services according to their
needs. Unfortunately, a generic security analysis for propri-
etary backup systems cannot be provided due to the freedom
to implement such as a service according to the device man-
ufacturer’s needs. Thus, a specific security analysis must be
conducted for the selected platform’s backup solution.

The remaining backup mechanism, i.e. the Android Backup
Service will be analyzed in the following in more detail. The
Android Backup Service has been introduced with Version
2.2 of the Android operating system and provides a backup
API that allows applications to backup and restore their data
to and from the cloud™™ The service itself is not intended
for data synchronization between multiple devices but for
restoring application data in case of a factory reset, or if
the user switches to a different Android device. Apart form
the application backup related functionality, the activation of
the system also causes the Android system to backup WiFi
passwords in plain tex

The backup system consists of two main parts: The Backup
Manager and the Backup Agent. The latter is application-
specific and has to be implemented by the application devel-
oper. It defines which data should be saved and performs the
actual backup and restore operations for the given application.
The Backup Manager acts system-wide and schedules all
backup and restore operations for all applications by calling
the corresponding Backup Agents. Then, the resulting data is
transported to the cloud storage. It is not mandatory for a
device manufacturer to implement the Android backup service.
If the system is present, its features and security depend on
the implementation of the device manufacturer. However, it
is assured that the backup data cannot be accessed by other
installed applications (assuming the device is not rooted).

1) Assessment: Regarding the assessment criterion key
derivation function, it can be stated that the default system
does not use an encryption system, and thus does not include
a KDF. The backup system is only protected with the user’s
Google account and the associated passcode.

The backup system provides several configuration capabil-
ities. The backup system can be activated by the user (located
within the Android privacy settings). However, there is no
rule for restricting this behavior within the standard MDM
sub-system of Android. For most Android devices, Google
provides a backup transport, the Android Backup Service
which is available for most devices that support the Google
Play Store{T_Tl In order to use this service (if it is available
on the given device), the application has to be registered for
Android Backup Service and the Backup Service Key must be
added to the Android manifest via a meta-data tag. Backed up
data is treated according to Google’s privacy polic

10http://developer.android.com/guide/topics/data/backup.html
http://arstechnica.com/security/2013/07/does-nsa-know- your- wifi-
password-android-backups-may- give-it-to-them/
Lhttps://developer.android.com/google/backup/index.html
Bhttp://www.google.com/policies/privacy/
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2) Attack Scenarios: There are several security issues that
represent strong reasons to deactivate the backup service, in
security-critical deployment scenarios. First, if not otherwise
implemented, the data is stored in plain text in the cloud.
This is especially relevant for WiFi passwords that are stored
in plain text in the cloud as soon as the backup system is
activated. The security of the data depends on the security of
the Google account passcode, which cannot be influenced by
MDM systems. Second, the standard Google Android MDM
rule-set does not include any rules that allow to configure the
backup system. However, such rules are present in certain
proprietary MDM extensions (e.g., Samsung SAFE). Third,
the developer decides whether application data can be backed
up with the backup system. A non-security-aware developer
might chose to use the backup system without being aware of
the consequences related to security.

V. SECURITY ANALYSIS - WORKFLOW

Based on the attack scenarios derived in the previous
section, we propose a workflow that assists security officers
of companies or public agencies in deploying Android devices
in security-critical environments. In particular, following the
proposed workflow allows security officers to systematically
identify potential threats and helps them to find appropriate
device configurations.

The presented workflow has been tailored to the general
scenario defined in Section [II] and has been designed under
the assumption that a thorough risk analysis within the context
of the deployment scenario has already been conducted so
that critical assets, threats, and risk factors are already known.
Based on the risk analysis and the existing policies, the
Android platform needs to be configured properly and the
appropriate applications for handling the critical data need to
be chosen. After selecting those applications and setting up
a demonstration environment that already contains data to be
protected, the workflow shown in Figure 2] can be applied.

In the following subsections, major analysis steps of the
proposed workflow are introduced and discussed in detail. For
each analysis step, implications of possible analysis results
are summarized, which need to be considered by the security
officer in charge. Potential threats (and their risk potential),
which arise from possible implications are also presented in
Figure 2] and discussed below.

A. File-System Encryption Supported

Verification of support for file-system encryption represents
the first analysis step of the entire workflow. The file-system
based encryption system is supported since Android 3.x, which
was only available on tablets. For smartphones, Android 4.0
was the first version to support the dm-crypt based encryption
system. Unfortunately, Version 4.x does not necessarily indi-
cate that encryption is supported by the device. There are also
certain 4.0 devices, which do not support encryption. Hence,
encryption support must be verified for each deployed device.

Implications for unencrypted systems: No data encryp-
tion: An attacker who gains access to the device can gain
access to all the data stored on the device that is not en-
crypted by other means. Alternative means include for instance
application-specific encryption systems, where an application

implements the encryption and key-derivation process on its
own. This scenario plays an important role for container appli-
cations, which need to provide their own security mechanisms
due to their utilization in Bring-Your-Own-Device scenarios
where no, or only limited assumptions can be made about the
security level of the device. Even if file-system encryption is
not supported by the given device, key material that is stored
in the Android KeyChain is still encrypted via the mechanism
described in Section

B. File-System Encryption Enabled

The file-system encryption is not enabled per default. Thus,
the system must either be enabled by the user or enforced
by setting the corresponding MDM rule. A security officer
must assure that available file-system encryption systems are
enabled.

Implications for encrypted systems: Off-device brute-
force attack: As soon as the encryption system is enabled,
a passcode must be chosen by the user. Since this passcode is
used for both the lock screen and the file-system encryption
system, a good balance between usability (short passcodes
for fast unlocking) and security (long passcodes) must be
found. The rules for selecting the passcode complexity must
be defined within the MDM system according to the security
level of the envisaged deployment scenario. Brute-force times
presented in Table |If and in Table |lI| assist security officers in
choosing appropriate passcode complexities.

Implication for unencrypted systems: No data encryp-
tion: The same implications as stated in the previous section

apply.

C. Android KeyChain Usage

Even if no files-system encryption is available, credentials
can still be used by the Android KeyChain, if this is sup-
ported by the respective application. Depending on whether
the KeyChain is used or not, different implications need to be
considered by the security officer.

Implications for key material protected by the Key-
Chain: Off-device brute-force attack: Except for the number
of iterations, the KeyChain is based on the same PBKDF2
function that is used for the file-system encryption system in
Android 3.0 to 4.3. The passcode selected for the KeyChain
is also used as passcode for unlocking the device, and for
encrypting the file-system (if activated). This implies that the
same considerations between security and usability must be
taken, and the brute force related issues described in Section
need to be considered. If the KeyChain also uses
additional hardware support to protect keys, a successful brute-
force attack allows using the keys only on the specific device.
If a software-only keystore is used, the keys can also be
extracted. If the Android system is already encrypted via the
file-system encryption system, there is no additional protection
offered by the Android KeyChain. If the passcode for the
Android encryption system has been found via a brute-force
attack, the same passcode can be used to derive the keys used
by the KeyChain encryption system.

Implications for other key material: If the Android
KeyChain is not used by an application that stores credentials,
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the developer could still provide an application-integrated
system that provides its own KDF and encryption scheme.
If such a scheme is not used and the credentials are stored
unprotected on the device, then their security depends on the
activation state of the file-encryption system.

D. Backup Usage

The conducted assessment has shown that Android’s
backup mechanism bears the risk to undermine the security
provided by enforced encryption mechanisms. The integrated
backup facility does not provide encryption when storing data
on Google’s servers. Furthermore, credentials of the Android
operating system (e.g. WiFi passcodes etc.) are stored in
plain text at the cloud provider. Apart from these problems,
the security of the backup depends on the strength of the
passcode chosen by the user for the Google account (Google
Account Security). Therefore, it is not recommended to use
this facility in security-critical scenarios. In any case, the
security officer has to be aware of usage of backup mechanisms
by applications the process and store security-critical data.

VI. CONCLUSIONS

Deploying Android in security-critical environments is a
complex task, as confidential data might get compromised
when being accessed, processed, and stored by insecure mobile
devices. To facilitate this task, we have systematically analyzed
and assessed different encryption systems of the Android
platform, which provide the opportunity to protect security-
critical and confidential data. From the obtained assessment
results, potential attack scenarios have been derived. Finally, a
workflow has been proposed, which assists in deploying and
configuring Android devices in security-critical environments
and applications.

Obtained assessment results have also shown one of the
main challenges of the Android platform: In contrast to other
mobile platforms such as iOS, BlackBerry, or Windows Phone,
Android features many more different versions and hence
shows a much higher fragmentation. This heterogeneity is
mainly caused by device manufactures, who supply their
devices with customized versions of the Android OS. Due
to this heterogeneity, the deployment of Android devices in
security-critical scenarios is a challenging task that requires
an in-depth security analysis of the envisaged platform. The
main difficulties are the various sub-systems that depend on
the specific device manufacturer’s implementation, the lack of

MDM rules/restrictions to configure relevant aspects of the
Android system, and the differences in the encryption systems.

Due to the given heterogeneity, the proposed workflow has
been defined on a rather abstract basis and does not consider
manufacturer-dependent features or limitations. Still, the pro-
posed workflow — and also the results obtained from the con-
ducted assessments — represents a useful basis that facilitates a
correct use of Android’s encryption systems in security-critical
applications. Manufacturer- or version-dependent refinements
of the proposed workflow are regarded as future work.
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