

 Zentrum für sichere Informationstechnologie – Austria
Secure Information Technology Center – Austria

 A-1030 Wien, Seidlgasse 22 / 9
Tel.: (+43 1) 503 19 63–0
Fax: (+43 1) 503 19 63–66

A-8010 Graz, Inffeldgasse 16a
Tel.: (+43 316) 873-5514
Fax: (+43 316) 873-5520

 http://www.a-sit.at

E-Mail: office@a-sit.at
DVR: 1035461 ZVR: 948166612 UID: ATU60778947

Projektbericht-Kontextbezogener Datenaustausch_final Page: 1 von 19

CONTEXTUAL DATA EXCHANGE

Technical Report

Version 1.0, 30.8.2016

Bojan Suzic – bojan.suzic@a-sit.at

Executive Summary:

This project addresses requirements for confidentiality of data exchange in the cloud. By evaluating
different configurations and implementation prototypes, we elaborated the need to protect data and
information flows between separate entities in the cloud. We also address the requirement to further
restrict and rethink data exchange so that no more than the information necessary traverses in cross-
entity flows.

Protocols and frameworks that are currently employed for data exchange on the web do not provide
the means to apply the principle of least privilege across interconnected systems to a full extent.
OAuth 2.0, a broadly applied web authorization framework, defines access restrictions by introducing
the concept of an access scope. Used as a simple opaque string structure, an access scope is in
practice coupled to service provider’s infrastructure and business case, lacking the appropriate
degree of flexibility and capability to express complex, interoperable and granular access
authorizations.

In the course of this project, we develop the reusable data structure that addresses the issues of
static, inflexible and practically non-interoperable authorization definitions. We first establish the
structure that introduces enhanced expressivity, context-sensitivity and adaptability in descriptions
of authorization constraints. We then develop the supporting software component and the web-
based interface for definition and inspection of access authorizations established using the proposed
structure. Based on that, we present a demonstration prototype and describe the application of our
structure both in terms of emerging solutions and existing authorization frameworks.

http://www.a-sit.at/
mailto:bojan.suzic@a-sit.at

Project Report Contextual Data Exchange Page: 2 von 19

Table of Contents

Table of Contents 2

Figures 3

Tables 3

1. Introduction 4

1.1. Current state 4

1.2. Terminology 5

1.3. Outline 5

2. Modelling Authorization Extents 5

2.1. What is an authorization extent? 5

2.2. General model 6

2.3. Definition of an authorization token 7

2.4. Description of vocabulary elements 7

2.5. Sample model 9

3. Prototype 10

3.1. Common library 10

3.2. Management interface 10

3.3. Functionality 10

4. Sample Case Scenario 11

4.1. Granular authorization for multiple resources 11

4.2. User-initiated structuring of the requested authorization 12

4.3. Machine-readable representation of authorization extent 16

5. Conclusion 18

6. References 18

Project Report Contextual Data Exchange Page: 3 von 19

Figures

Figure 1: TBox-model defined in DASP-Core vocabulary .. 7

Figure 2: Sample ABox-based instantiation of resource description .. 9

Figure 3: Architecture of Ctx-Gateway .. 11

Figure 4: Selecting resources.. 13

Figure 5: Selecting actions for each requested resource ... 13

Figure 6: Selecting operations applicable over each action ... 14

Figure 7: Selecting required elements for each action ... 15

Figure 8: Selecting acceptable operations applicable over each element 15

Figure 9: JSON-based representation of authorization extent ... 17

Tables

Table 1: Class types defined in DASP-Core vocabulary .. 8

Table 2: Object properties defined in DASP-Core vocabulary ... 8

Table 3: Data properties from DASP-Core vocabulary .. 9

Project Report Contextual Data Exchange Page: 4 von 19

1. Introduction

The emerging notion of data-driven economy sets the focus on data as an important asset in
generating new knowledge and wealth in today’s world. The adoption of technologies and concepts
such as smart cities, smart healthcare, smart government and smart energy is expected to
accelerate in coming years and decades, resulting in the transformation of economy and business
models [1, 2]. The significance of this ongoing process has been acknowledged by government
authorities as well, leading to specific actions aimed at supporting and facilitating the acceptance of
data-driven business [2].

Big Data, large-scale data processing, and data exchange are recognized as some of the principal
enablers of data-driven economy. In this work, we consider the data exchange as a process that
quickly gains significance as the novel business models emerge. We focus on security aspects of
data exchange across different entities and introduce a new perspective that addresses security
challenges and issues present in existing standards and implementations. These issues prevent
secure and privacy conforming data sharing in complex flows that involve many subjects, diverse
resource types and different data sharing layers.

In this work, we present a novel approach for formalizing authorizations. Our approach enables
authorization to be transparently reused across various entities and platforms, supporting the
interoperability of security functions in complex and internetworked environments. First, we introduce
the structural basis for modeling of authorizations using graph-based descriptions and semantic
vocabularies. We then present the software framework that implements our proposal and shows its
practical application in terms of a web-based application prototype for the definition of expressive
and granular authorization extents. Our proposal is a part of wider effort1 which is intended towards
establishing the conceptual framework and supporting software tools aimed at advancing the
security of cross-domain data sharing and integration processes

1.1. Current state

By taking part in a broad range of processes, such as data sharing, data reuse, and data processing,
numerous entities are benefiting from the generation of new knowledge or derivation of new value
from existing datasets. Serving both as technology and business enablers, the paradigms such as
cloud and APIfication [3] foster the establishment of further means to generate, share, process and
exchange the data on a large scale in the web and cloud. Currently, OAuth 2.0 [4] is de facto mostly
adopted and widely used framework for web-based authorizations. By applying the flows defined in
this framework, many subjects worldwide are exchanging the data or providing authorization
consents for cross-entity resource sharing and service consumption.

In our previous work [5, 6, 7] we have investigated the capability of OAuth 2.0 and its emerging UMA
profile [8, 9], especially regarding the structuring of authorization consents and their reuse across
diverse platforms and entities. In [5] we have elaborated five issues related to security,
manageability, and interoperability of cross-organizational data sharing flows based on these
protocols. These include the arbitrary definition of access scopes, non-standardized approach of
access scopes, coarse-grained permissions, detached authorizations and out-of-the-band process
for requesting of permissions.

In this work we provide a model that extends existing access scopes in OAuth 2.0 and UMA, enabling
expressive, adaptable, granular and dynamic definition of scope-based authorizations for data
sharing and services consumption. With this proposal, we aim to address identified issues and
provide a significant step towards the unified framework for advancing the security of cross-
organizational authorizations and data sharing.

1 We use working title DAta Sharing and Processing framework (DASP) to denote the work that addresses

various perspectives and related challenges

Project Report Contextual Data Exchange Page: 5 von 19

1.2. Terminology

We interchangeably apply the terms authorization extent, authorization scope or simply
authorization. These terms should be referred here as synonyms. In practical meaning, authorization
extent is used to describe a more abstract concept of an authorization instance and its related
properties. In our framework, we treat this concept as the reusable asset in broader interactions
related to authorization in the inter-organizational environment. On the other hand, authorization
scope conforms more to a practical application of our structure in OAuth or UMA authorization
frameworks. In this case, the structure is reduced to comply with the concept of a scope, as foreseen
in the respective frameworks.

In the following sections, we oft rely on terms such as a client, resource owner, and service provider.
We refer to these terms as defined in OAuth 2 web authorization framework [5], referring to the client
that accesses the resources owned by a resource owner and collocated at some service provider.

1.3. Outline

In the following chapter, we present the model of enhanced authorization extents. We first clarify the
understanding of authorization extent and its role in security management. We then introduce a
general model that establishes the structural elements and relationships used to structure
authorizations. Following that, we define an authorization token, explain its particular elements and
structuring flow. We conclude the chapter with the sample model and its explanation.

In the third chapter, we present the software library and the prototype developed to structure the
authorizations for end users. We present the software architecture and its main components.

In the fourth chapter, we introduce the case scenario. We first define the authorization requirements,
then we walk through the prototype interface, illustrate and explain particular steps. The prototype is
used to present the capability of provided library and GUI tool.

Finally, we conclude this report and provide an outlook of further work.

2. Modelling Authorization Extents

In this section, we present the general conceptual model that enables the description of the token
structure presented in this work. First, we present the general overview of provided classes, object
and data properties. Then, we explain each of them, describing their role and integration in the
framework.

Our work presented in this section builds on the work outlined in our initial technical report [3] and
published workshop paper [4]. While these publications addressed the application of interoperable
security policies in cross-entity context, in this work we focus on the application of client-provided
authorization requests that conform to the flows in currently broadly applied standards such as OAuth
2.0 and UMA. These authorizations may be transformed to security policies in later stages, as
described in [4].

In this work, we reuse service descriptions provided in referenced works. We furthermore refine and
extend the main vocabulary presented in the initial work. Based on these changes we establish
DASP (DAta Sharing and Processing) Framework as the subsequent iteration of our previous work.

2.1. What is an authorization extent?

Authorization extent is a concept that describes a degree of authorization that is requested by the
client and consented by the resource owner. This refers to the authorization as the multidimensional
concept, referring both the resources, actions, operations, and their consisting elements, using
different levels of granularity and expressivity. In this work, the authorization extent is furthermore
considered to refer to a specific context that defines its validity and applicability under different

Project Report Contextual Data Exchange Page: 6 von 19

situations. The definition of expressive, contextual and dynamic authorizations we see as a novel
contribution not present in existing frameworks.

Granularity in the sense of this work refers to the ability to reference resources at different abstraction
and instantiation levels that correspond to resource type, its subtype, particular instance or its
property. The granularity in this work further refers to the resource representation that depends on
particular context and includes additional data elements2. Similarly, expressivity refers to the ability
to establish and describe these interrelationships in a way that enables representations on an
arbitrary level of complexity, while maintaining consistency and low integration overhead.

One of the main challenges in describing authorization extents is the level of details that need to be
provided to clients. In standards, such as OAuth 2 and UMA, the structure and meaning of
authorization scopes are left to the arbitrary definition of providers, preventing automated reuse,
structuring and reasoning over these entities in cross-domain and web-wide context [6, 8].

This non-definition in these standards is left for the purpose – it is hard to catch descriptions of
resources across a diverse range of the systems and integrate them in a long-term applicable
standard that aims to be adopted in a broader scope. One of the related challenges is the syntactic
perspective that dominates in a typical protocol or datatype standardization process.

In our proposal we approach this challenge by relying on an additional layer that enriches syntax-
focused structures with an additional semantic layer that enables flexible definition and exchange of
concepts while maintaining syntactical requirements. In this work, we further aim to address the
overall challenge by providing the framework that enables structuring and reusing of authorization
extents on a large scale, allowing an automated authorization and security policy management
across the diverse range of platforms.

2.2. General model

Figure 1 provides a simplified graphical overview of refined DASP-Core vocabulary for definition and
enforcement of authorization extents. This description corresponds to TBox data model [11],
representing abstract classes and their relationships.

The particular implementations instantiate these classes and establish their inter-relations by reusing
provided object properties and by following predefined constraints in the form of ranges and
domains. Additionally, data properties are defined by reusing and refining our DASPCore vocabulary
[7, 6] and general properties defined in RDFS vocabulary [12].

2 Consisting parts which are a part of the resource in a whole. For instance, an API resource is delivered as a
monolithic (atomic) data structure, usually as a JSON or XML document. The constituting elements of this
resource are considered as data elements in our work, which envisages contextual evaluation or resource

transformation based on its properties and/or the properties of its consisting parts.

Project Report Contextual Data Exchange Page: 7 von 19

Figure 1: TBox-model defined in DASP-Core vocabulary

2.3. Definition of an authorization token

Following the model provided in Figure 1, the definition of authorization token starts from the
Request class, which describes a request coined by the client and sent to the service provider or
resource owner for authorization. This Request may contain one or more authorization Scopes .
Each scope structures an authorization extent that describes requires and acceptable Resources ,
Actions , Elements and Operations 3.

Starting from the particular Scope , it references the requested Resources . Each resource
represents the resource exposed by the service provider to the clients. The resource is hence an
abstract representation of something that the service provider designates as a resource or an asset.
In a standard case, this resource is accessible and referenced via RESTful API and can be subjected
to different Actions . In terms of RESTful paradigm, each Action may correspond to a particular set
consisting of an HTTP method , supported operations on Action and a range of Elements exposed
or processed in the form of that Action .

While the service provider references exposed actions in the form of has Action property, clients
structure authorization request by referencing these actions using requestAction property. This
way, the distinction is made between available and requested actions, depending on the perspective
(requesting client or providing service).

In the further process, the client may additionally refine its authorization request by providing more
parameters on requested Elements or accepted operations on a level of Action or Element . In
this sense, an Element corresponds to the referenceable data record provided with the execution
of an Action . In the case of RESTful resources, an Element may represent a consisting part of API
response provided over particular Action .

2.4. Description of vocabulary elements

In the following tables we provide the short descriptions of object classes, properties and data
properties of provided vocabulary. These correspond to a TBox model [11] that supports the creation
of authorization scopes.

3 We apply monospaced typeface to refer to the classes and properties provided in used vocabulary

Project Report Contextual Data Exchange Page: 8 von 19

By instantiating these classes and their relationships in the form of directed graph [12, 13], the clients
define the authorizations requested from resource owners or service providers.

Class Description

Action Action is an entity that represents the activity that can be
executed on a resource

Element Element is a consisting part of a resource

HTTPMethod Represents standard HTTP methods.

Operation References the operation that can be executed over the
particular element or action

Request Describes HTTPMethod supported by the action

Resource Resource is a basic type that represents retrievable resource
by the means of API

Scope Denotes the structured scope that is included in the
authorization request

Selector Selector represents a way to retrieve instances of the
Element that can be later used to represent or reason over its
properties.

URLPath URLPath describes a part of an URL. Several URLPaths
concatenated in their original order form a complete URL
Path.

AuthNMethod Authentication method
(abstract class for future developments)

Table 1: Class types defined in DASP-Core vocabulary

Property Description

supportsOperation Denotes operations that can be executed on entity
(exposed by service)

acceptsOperation Denotes operation that can be executed on entity or its part,
which is acceptable by the client requesting authorization

exposesElement References the action that is supported by the resource

isContainedIn Reverse property that references the action exposing an
Element

hasAction Describes HTTPMethod supported by the action

hasHTTPMethod References parts of URL path that is used to initiate action.
The complete URL path consists of its parts (1…n)

hasURLPath(1-ƛƾ Denotes the structured scope that is included in the
authorization request

includesScope Denotes the resource that is requested with authorization
request

requestResource References the resource requested in the authorization
request (referenced by scope)

requestAction Denotes the action that is requested in the authorization
request (referenced by resource)

requestElement

hasMutableEffect States if the action has mutable effects on its exposed
Elements

Table 2: Object properties defined in DASP-Core vocabulary

Project Report Contextual Data Exchange Page: 9 von 19

Property Description

hasDataSegment Describes data path segment of an Element

hasDataPath Describes data path used to retrieve an Element
(subproperties such as XML and JSON Path)

hasXMLPath Describes XML path used to retrieve an Element

hasJSONPath Describes JSONPath used to retrieve an Element

Table 3: Data properties from DASP-Core vocabulary

2.5. Sample model

Figure 2 provides a graphical representation of a sample service model based on DASP-Core
vocabulary [12, 7, 6]. This model is realized as an ABox description [11, 13] of particular service and
its endpoints.

By looking at this example we may observe that the service provider exposes a Resource labeled
as a message. This resource supports retrieval Action , which is characterized using HTTP GET
request and executed on URL described by urlPath properties. As the action has mutableEffect
set as false, this implies that its execution does not change target resource on the service provider.
Furthermore, this implies that supported operation may be executed in a post-processing step, prior
to the delivery of data to the client.

Figure 2: Sample ABox-based instantiation of resource description

The described resource (message), when accessed using retrieval action, exposes two elements in
its response. The first element is a header of the message, and the second its id . Hence, in this
description, Elements provide a way to describe and alter the monolithic representation of action’s
response. By providing this information, we enable clients to semantically and structurally assess
the provided results and restrict their actions on particular parts that are relevant to clients’ use
cases. The value of this element is accessible by applying data path property, instantiated as JSON
Path or XML Path vector.

In the further description, the id element is joined to the Selector , a class that enables live retrieval
of available options. Its instantiation is practically used by the resource owners to retrieve available

Project Report Contextual Data Exchange Page: 10 von 19

resource options or their instantiations, enabling the restriction of the authorized access down to a
particular instance. Similarly, the references to URLPath elements in the Action descriptions may
be used by the clients to autonomously retrieve requested Resources during the operational phase,
once the authorization has been consented by the resource owner.

3. Prototype

In this section, we describe the library for management of authorization extents and the prototype of
web-based application used to structure and manage authorizations based on DASP framework.
Both of these assets were developed in the course of this project with the purpose to demonstrate
the overall concept and provide a basis for its evaluation.

3.1. Common library

The common library used for manipulation of authorization tokens provides the basic functionality
for the instantiation, management, search and extraction of authorization tokens. This library consists
of Java classes and packages4 that provide interfaces for management of tokens and additional tools
for manipulation, transformation and processing of RDF and OWL data [12, 13].

Additionally, the library includes vocabularies that contain abstract resource models and sample
service and token models encoded in RDF/XML and JSON-LD [14] formats.

3.2. Management interface

The prototype implementation provided in the course of this project is developed using Java/Scala
Play Framework 2.45 The project depends on and includes additional external libraries, including the
family of Apache Derby , JSONLD- Java , Apache Jena , SemWeb4J, Jersey Security , Jersey
Core and Jayway JSONPath families of dependencies.

Figure 3 describes the architecture of the prototype system. This architecture includes the model
provided by Play Framework , which provides MVC-based, flexible and efficient application
framework for rapid development of scalable and reactive applications.

The Router is an entry point for users and applications, providing a RESTful interface coupled with
application Controllers , each dedicated to specific endpoint and functionality. The Controllers
reuse the common library, which provides different Models and utility tools for manipulation of
authorization tokens. Controllers furthermore rely on different Views , used to render pages for
end-users and provide client-based JavaScript functions for manipulation and API calls. The views
are based on Twirl framework , which relies on Scala constructs for efficient rendering and reuse
of resources. The responses to end users are served both by Controllers and Views , depending
on particular functionality.

3.3. Functionality

The prototype in this section provides the web application that enables users to construct and inspect
authorization tokens based on DASP framework’s conceptual model. By using this system users are
able to construct expressive, granular and context-sensitive authorization tokens that can be used
as authorization requests in the scope of different protocols, including OAuth 2 [5], UMA [9], DASP-
specific and other interactions.

4 Packages daspcommon and model in archive

5 http://playframework.org/

Project Report Contextual Data Exchange Page: 11 von 19

The details on functionality and particular actions supported in the prototype are further described
on the basis of example case scenario provided in Section 4.

Figure 3: Architecture of Ctx-Gateway

4. Sample Case Scenario

In this section, we present a case study of defining an authorization extents using DASP framework’s
components that can be employed to describe authorization scopes in various protocols, such as
OAuth 2.0 or UMA.

4.1. Granular authorization for multiple resources

We first present a GUI interface walkthrough needed to define an authorization extent with the
following requirements defined in natural language:

o Requested is the access to resources Message label and Email message, explicitly requiring
the particular extent of provided data and its context-specific transformations. These

Project Report Contextual Data Exchange Page: 12 von 19

transformations are executed both on the level of returned data set and its particular
consisting elements.

This general requirement is refined with the following resource-specific explicit requirements and
acceptable transformations:

Message label:

o Allow the retrieval of existing labels, adding new labels and updating of existing labels

o When applying Message label retrieval, explicitly accept the operation Contextual filtering of
complete returned dataset

o When applying Message label retrieval, explicitly request the following data fields (elements)
of Message label to be included in provided dataset: Total unread messages and Total
Messages

o Allow Total unread messages data field of resulting data set to be cleaned prior to delivery

Email message:

o Allow retrieving email messages in general

o Explicitly request the following data fields (elements) of Email message to be included in the
response: Thread id, Internal date and Message snippet

o Allow specific operation of content removal to be executed over Thread id data field

This request, therefore, represents a complex authorization extent that asks for access to two
different resource types, with supporting different activities for each of them.
Furthermore, this request states explicit data requirements for each of these resources. In a standard
case, the returning data set of both resources is provided as a whole, containing the information that
is not relevant to use case as well.

By stating explicit data requirements and acceptable data transformations, both on the level of
complete resource and its consisting data elements, the requesting client communicates its required
acceptable access rights in several dimensions. In the further workflow these requirements may be
accepted by the resource owner fully, or further constrained to allow for other transformations or
restrictions according to the preference of a resource owner and available options at the service
provider.

4.2. User-initiated structuring of the requested authorization

In this section, we take the requirements presented in the previous section and present how they
can be structured by using the provided web-based tool.

For usability reasons and to gain a practical overview of definition phases and requirements, this
activity is organized in the five steps, as presented in the following figures. Although the transition
between the steps is visually presented as a linear process, the prototype supports arbitrary
refinement and selection of the steps in a non-linear manner with limited functionality6.

6 For instance, we cannot select acceptable operations on elements if the elements were not selected in the
previous step. However, we can allow user to traverse back to select additional elements and refine existing
selections at each step.

Project Report Contextual Data Exchange Page: 13 von 19

In the first step, as presented in Figure 4, the user selects requested resources. These resources
are exposed by the service provider and read by the application. The requested resources are
presented in the lower part of the screen as white boxes.

Figure 4: Selecting resources

After the initial selection of resources is done, the user continues with the second step, to select
requested actions over each of requested resources. These actions are presented next to each
selected resource in the form of a dropdown with selectable elements, as shown in Figure 5. The
selected actions are presented in the right part of the screen.

Figure 5: Selecting actions for each requested resource

In the following step the user chooses the acceptable operations over each resource set. These
operations may be executed in the first phase of a request7, or in the second request phase8.
Furthermore, they include the whole request or response set, which corresponds to what is exposed

7 For instance, the PUT/POST data sent to API by the client may be subjected to a pre-processing, prior to its
provision to the target service

8 The response of target service may be post-processed, prior to its delivery to the client

Project Report Contextual Data Exchange Page: 14 von 19

or requested from the API. The example list of available operations and their active selection for
Message label and contextual filtering of its response is presented in Figure 6.

By explicitly stating a set of acceptable operations, the user (client) confirms that their execution is
acceptable for its use case. One of the typical scenarios for this case is the filtering of redundant
data that is normally provided by the service provider, but which is not relevant for connecting client.
This way, the data sharing process can conform to the principle of least privilege [15], allowing the
minimal information footprint to be provided to the accessing client.

By organizing supported transformative operations and enhancing the expressivity of security
policies exposed to the clients (or resource owners), using this approach service providers can allow
context-specific execution of acceptable operations, enabling the dynamic and selective data
transformation that relates to a particular client, environment, data parameter, or another variable.

Figure 6: Selecting operations applicable over each action

Following the selection of acceptable operations, the clients may explicitly request the data fields
that have to be included in each interaction. Referred as elements, these data fields represent an
abstraction of data sets that applies additional granularity level that is not provided in standard API
descriptions.

By following the example of the email message, the provider may allow an API operation to return
the whole message, available as a JSON structure that consists of several message fields, such as
header, time, sender, recipient, spam-score etc. This structure is normally provided as a whole,
allowing clients to retrieve only the whole data and not its particular needing parts.

Project Report Contextual Data Exchange Page: 15 von 19

Figure 7: Selecting required elements for each action

In our solution we enable service providers to expose descriptions of such data sets and to allow the
clients to express the requirement for particular parts (data fields) of each resource on an additional
level of granularity, without the need to re-engineer API interfaces or introduce additional options.
Following this possibility and the example of the email message, the clients are able to explicitly
state the requirement to be provided with message header or the list of senders, and to ignore other
parts of the resource. Based on this requirement, the resource owner or service provider may include
automated removal or processing of other parts of the data set, specifically for each accessing client
and context.

The interface presented on Figure 7 hence shows an illustrative list of selected and selectable
elements that describe an email message. In this selection, the user explicitly states that required
are Thread id, Internal date and Message snippet, as introduced in Section 4.1.

Figure 8: Selecting acceptable operations applicable over each element

Finally, as illustrated in Figure 8, the user is able to check a range of supported operations for each
requested element of each requested operation. In this step, the user chooses the operations that
will be stated as acceptable operations for each element.

Project Report Contextual Data Exchange Page: 16 von 19

Compared to step 3, the difference is the level of granularity. While step 3 considers operations over
complete requests and responses, this step refers to the operations available for particular data
elements of each response.

The shaded boxes in Figure 8 imply that particular action does not contain elements or elements
with related transformative operations to be executed in the authorization scope. This example
illustrates the potential to expose and request the resources and their models in different descriptive
levels and details that conform to the particular deployment and services of each service provider.

4.3. Machine-readable representation of authorization extent

In this section, we provide the machine-readable version of authorization request specified in Section
4.1 and structured using web-based graphical interface using the process presented in Section 4.2.

Figure 9 shows the authorization extent included as an authorization scope in the access request of
DASP framework. This structure includes additional nodes not presented in the steps executed in
Section 4.3, which refers to specific representations presented in DASP framework that relate to the
authorization request, and its included scopes.
In this framework, each structure may consist of several requests, and each of them of several
authorization extents (scopes), whose definition is out of the scope of this work.

{ ò@context ó: {
 "ctx - dasp - core": "http://www.daspsec.org/ont/ctx - dasp - core#",
 "mes sage": "http://www.daspsec.org/ont/message#",
 "request": "http://www.daspsec.org/ont/ctx - dasp - req#"
 },
 "@graph": [
 {
 "@id": "request:newrequestinstance",
 "@type": [
 "http://www.w3.org/2002/07/owl#NamedIndividual",
 "ctx - dasp - core:Request"
],
 "ctx - dasp - core:includesScope": { "@id": "request:newscopre" }
 },
 {
 "@id": "request:newscopre",
 "@type": [
 "http://www.w3.org/2002/07/owl#NamedIndividual",
 "ctx - dasp - core:Scope"
],
 "ctx - dasp - core:requestResource": [
 { "@id": "message:Label" },
 { "@id": "message:Message" }
]
 },
 {
 "@id": "message:Label",
 "@type": "ctx - dasp - core:Resource",
 "ctx - dasp - core:requestAction": [
 { "@id": "message:AddLabel" },
 { "@id": "message:UpdateLabel" },
 { "@id": "message:RetrieveLabels" }
]
 },
 {
 "@id": "message:Message",
 "@type": "ctx - dasp - core:Resource",
 "ctx - dasp - core:requestAction": {
 "@id": "message:RetrieveMessage"
 }
 },
 {
 "@id": "message:MessageThreadId",
 "ctx - dasp - core:acceptsOperation": { "@id": "message:ClearElementM" }
 },
 {
 "@id": "message:Mess agesUnread",
 "ctx - dasp - core:acceptsOperation": { "@id": "message:ClearElementContent" }
 },
 {
 "@id": "message:RetrieveLabels",

1

2

3

4

5

Project Report Contextual Data Exchange Page: 17 von 19

 "ctx - dasp - core:acceptsOperation": { "@id": "message:ContextLabelFiltering" },
 "ctx - dasp - core:reque stsElement": [
 { "@id": "message:MessagesTotal" },
 { "@id": "message:MessagesUnread" }
]
 },
 {
 "@id": "message:RetrieveMessage",
 "ctx - dasp - core:requestsElement": [
 { "@id": "message:MessageInternalDate" },
 { "@id": "message:MessageSnippet" },
 { "@id": "message:MessageThreadId" }
]
 },
 {
 "@id": "http://www.daspsec.org/ont/request",
 "@type": "http://www.w3.org/2002/07/owl#Ontology",
 "http://www.w3.org/200 2/07/owl#imports": [
 { "@id": "http://www.daspsec.org/ont/message" },
 { "@id": "http://www.daspsec.org/ont/ctx - dasp - core" }
] }] }

Figure 9: JSON-based representation of authorization extent

By applying this example in the case of OAuth 2.0 and UMA, the relevant fields to be included in the
access scope would be the part of the graph that starts with request:newscopre, including its
children. Hence, we show how our structure can be reused among different frameworks and
protocols.

The format presented in Figure 9 conforms to compacted form of JSON-LD [14]. This form allows
the good level of human readability of resources, as well as their efficient processing and inclusion
in automated systems, including the web-based exchange of linked data. Other potential formats
can include RDF/XML family, which is typically used for graphs representations in the semantic web.

We now provide the explanations of the consisting parts of the structure, according to the labeling
presented on Figure 9.

(1) This part defines main namespaces that will be applied in the graph.

(2) According to DASP framework, the graph starts with a new instance of Request class,
defined in DASP-Core vocabulary. This request includes a new instance of Scope class,
which corresponds to authorization extent (scope).

(3) The instance of a scope states requested resources, referencing the class instantiations from
referred Message vocabulary. These are instances of Resource class, defined in DASP-
Core vocabulary, and exposed at service provider as service description.

(4) This node describes requested Label resource, stating the actions requested in the
authorization. These actions are instances of Action class, provided in the service
description.

(5) Analogously, the requested action for Message resource is provided.

(6) This part further clarifies which elements are requested for action that relates to retrieval of
email messages. The descriptions above extend existing model of Message 9 with statements
over acceptable operations for exposed elements.

(7) Finally, the request states imported vocabularies from external parties. DASP- Core refers to
the common vocabulary used to define requests and describe the scopes, while Message

9 Provided by the service provider

6

7

Project Report Contextual Data Exchange Page: 18 von 19

refers to model exposed by service provider to describe its resources, interface, and
functionality.

5. Conclusion

This technical report presents the following development iteration of the framework that integrates
cross-system policy and resource management, enabling machine-to-machine awareness of
resources distributed and shared across heterogeneous cloud systems. In the presented work we
have focused on authorization descriptions which are used across a range of frameworks to ask and
consent resource and service authorizations in resource sharing interactions.

We have presented a model of the structure that describes authorizations in an expressive, granular
and interoperable manner. In order to demonstrate our approach and enable its further evaluation in
a range of use cases, we have developed a library and web-based management interface used to
structure and inspect proposed authorization structure.

By elaborating on particular process flows, user interface and structure representation, we have
illustrated its capability and integration in target environments. By applying a sample case scenario
we have shown how our structure enables the description of user requirements in complex scenarios
that involve multiple parties and separate evolving platforms.

In the future work we aim to focus on other aspects of proposed framework, demonstrating the
integration and application of proposed structure in a range of cases, including transformation to
security policies, evaluation of these policies and integration with existing and diverse range of APIs.

6. References

[1] D. Vesset, H. D. Morris, B. Woo and N. Yezhkova, "World wide Big Data Technology and
Services," IDC, 2012.

[2] B. Bilbao-Osorio, S. Dutta and B. Lanvin, "The global information technology report 2013," in
World Economic Forum, 2013.

[3] European Commision, "Towards a thriving data-driven economy," European Commision,
Brussels, 2014.

[4] J. Wettinger, U. Breitenbücher and F. Leymann, "Any2API - Automated APIfication," in
Proceedings of the 5th International Conference on Cloud Computing and Services Science,
2015.

[5] D. Hardt, The OAuth 2.0 authorization framework., 2012.

[6] B. Suzic, Multidimensional Security Policies, Graz: Zentrum für sichere
Informationstechnologie - Austria (A-SIT), 2016.

[7] B. Suzic, "User-centered Security Management of API-based Data Integration Workflows,"
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1233-
1238, 2016.

[8] B. Suzic, "Securing integration of cloud services in cross-domain distributed environments," in
Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016.

Project Report Contextual Data Exchange Page: 19 von 19

[9] T. Hardjono, E. Maler, M. Machulak and D. Catalano, "User-managed access (UMA) profile of
OAuth 2.0," 2016.

[10] E. Maler, "Extending the Power of Consent with User-Managed Access: A Standard
Architecture for Asynchronous, Centralizable, Internet-Scalable Consent," in Security and
Privacy Workshops (SPW), 2015.

[11] R. Brachman, R. Fikes and H. J. Levesque, "Krypton: A functional approach to knowledge
representation," Computer, vol. 10, 1983.

[12] R. Cyganiak, D. Wood and M. Lanthaler, "RDF 1.1 concepts and abstract syntax," W3C, 2014.

[13] W3C Owl Working Group, OWL 2 Web Ontology Language Document Overview, W3C, 2009.

[14] M. Sporny and L. Markus, Json-ld 1.0-a json-based serialization for linked data, W3C, 2014.

[15] F. B. Schneider, Least privilege and more, vol. Computer Systems, Springer, 2004.

[16] F. Schneider, Least privilege and more, Springer New York, 2004, pp. 253-258.

[17] A. Kertesz and S. Varadi, Legal aspects of data protection in cloud federations, Springer Berlin
Heidelberg, 2014.

[18] G. Kelly and P. Hunt, System for Cross-Domain Identity Management: Core Schema, 2015.

[19] Kantara Initiative, User managed access, 2013.

[20] I. Salvadori and F. Siqueira, A Maturity Model for Semantic RESTful Web APIs, IEEE, 2015.

[21] L. D. Xu, Enterprise systems: state-of-the-art and future trends, IEEE, 2011.

[22] M. Pezzini and B. J. Lheureux, Integration platform as a service: moving integration to the
cloud, Gartner, 2011.

[23] E. Rissanen, eXtensible Access Control Markup Language (XACML) version 3.0, OASIS, 2013.

[24] V. Hu, D. Richard Kuhn and D. Ferraiolo, Attribute-based access control, IEEE, 2015.

[25] R. Sandhu, Role-based access control, 1998.

[26] F. Liu, NIST cloud computing reference architecture, NIST, 2011.

