Master of Puppets: Trusting Silicon in the Fight for Practical Security in
Fully Decentralised Peer-to-Peer Networks

Bernd Priinster! 22 Edona Fasllijal’z, Dominik Mocher! 2
Vnstitute of Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria

2Secure Information Technology Center — Austria (A-SIT), Austria
{bernd.pruenster,edona.fasllija,dominik.mocher} @iaik.tugraz.at

Keywords:

Abstract:

peer-to-peer security, decentralised system security, hardware-based security, trusted computing

This paper presents a practical solution to Sybil and eclipse attacks in a fully decentralised peer-to-peer context by

utilising trusted computing features of modern Android devices. We achieve this by employing hardware-based
attestation mechanisms introduced in recent Android versions and bind each P2P network node identifier to a distinct
physical device. In contrast to resource-testing approaches, this binding makes it impossible for attackers to rely on
cheap cloud computing resources to outperform legitimate users. We address well-known P2P challenges by applying
trusted computing approaches, which were previously only theorised in this context. This results in a system that can
now actually be implemented on a global scale. We thoroughly mind bandwidth, power and performance constraints
to achieve a ready-to-use solution whose only requirement is the possession of a recent Android phone.

1 INTRODUCTION

Practical security in fully decentralised peer-to-
peer (P2P) networks has remained a challenge ever
since such systems have been proposed. As centralised
peer-to-peer security is a non-issue, this paper focuses on
decentralised P2P systems. Sybil (Douceur, 2002) and
eclipse attacks (Singh et al., 2004) are still prominent
threats to peer-to-peer systems and require elaborate
countermeasures. The advent of cheap cloud computing
power even worsened this situation, rendering resource
testing approaches virtually ineffective (Priinster et al.,
2018). In fact, Priinster et al. argue that the only effective
countermeasure is to either introduce some degree of
centralisation or couple the P2P network layer tightly to
the application running on top of it.

We present the Master of Puppets as a practical
solution to the most critical security issues in fully
decentralised scenarios. The Master of Puppets’ approach
does, for the first time, not involve inefficient resource
testing or centralisation. Our solution follows a mobile-
first approach targeting current Android devices and
builds upon hardware-based key attestation capabilities
and self-certifying identifiers to effectively eliminate
eclipse and Sybil attacks under real-world conditions.
In essence, recent advancements of Android’s remote
attestation capabilities have made it possible to actually

(% https://orcid.org/0000-0001-7902-0087

utilise trusted-hardware-based security measures while
still providing a practically applicable solution.

In short, we present the first practical P2P network
design which can actually enforce every device to operate
only a single peer. This rules out both Sybil and eclipse
attacks and thus eliminates the foundation of whole
classes of peer-to-peer-specific attacks. We accomplish
this without requiring elaborate enrolment procedures,
centralised identifier generation, inefficient resource
testing like proof-of-work (PoW).

The following section covers the technological back-
ground of our concept and summarises the state of P2P
security and Android’s security features to illustrate
how they can be used to enforce operating unmodified
applications on actual physical devices. We combine
these features with self certifying identifiers and harness
it as the cornerstone of the Master of Puppets. Section 3
discusses our approach, while Section 4 analyses its
security aspects. Section 5 concludes this work.

2 BACKGROUND

Peer-to-peer overlays differ drastically in terms of their
overlay structure, routing mechanism, how they assign
identifiers, exchange data and share responsibilities.
When considering security features of Peer-to-Peer net-
works, the specifics of the targeted P2P overlay model are

critical. In this paper, we focus on structured P2P over-
lays, and more specifically in Kademlia (Maymounkov
and Mazieres, 2002) networks, due to the many desired
features and their practical impact, with BitTorrent (Co-
hen, 2013) and IPFS (Benet, 2014) both being based on
this design.

The distributed nature of P2P systems introduces
susceptibility to a series of attacks that aim at disrupting
their storage, service quality, consistency, behaviour, or
overall operability of the network. Examples of the most
prominent attacks include routing table poisoning (Locher
et al., 2010), flooding (Zargar, Joshi and Tipper, 2013),
eclipse (Singh et al., 2004), and Sybil (Douceur, 2002)
attacks. Certain threats, such as Sybil and eclipse attacks,
are based on malicious control of identifiers. The absence
of a central authority makes authentication in decentral-
ised peer-to-peer overlays inherently difficult. Secure,
verifiable, and limited node identities are essential for
preventing attackers from forging node identities and
staging subsequent attacks.

The Sybil attack defined by Douceur (2002) is based
on the concept of inserting a node into a P2P network
multiple times, each time with a different identity. The
goal of Sybil attack might range from enabling other
attacks to disrupting the network connectivity, or even
effect majority decisions in consensus protocols. Levine,
Shields and Margolin (2006) categorise approximately
90 approaches that have been proposed as defense mech-
anisms against Sybil attacks. These fall into categories
such as: trusted certification, resource testing, no solu-
tion, recurring costs and fees and trusted devices. A
running theme among these approaches is the idea that
without a central trusted authority that certifies peers’
identities, there is no realistic approach to prevent Sybil
attacks. Resource-testing based approaches mandate
that all peers—even highly-constrained ones—have to
spend a certain amount of resources, such as a proof-of-
work (PoW) to have the network accept them. Given the
heterogeneous distribution of computing power, storage
and bandwidth in today’s diverse device landscape and
the cheap availability fo cloud computing, the utility of
such approaches is questionable (Priinster et al., 2018).

Eclipse attacks (Singh et al., 2004), on the other hand,
target a node or a specific group of nodes and try to isolate
(or "eclipse’) them by populating their first-hop neighbor
set. The goal is to control a victim’s neighbours as wells
as incoming and outgoing traffic. Attackers might first
stage a Sybil attack in order to create seemingly distinct
malicious nodes around attack targets, or directly mount
an eclipse attack using a small set of malicious nodes.

Various countermeasures have been proposed to en-
hance the resiliency of P2P overlays against eclipse
attacks. Baumgart and Mies (2007) propose a mitigation
mechanism against, amongst others, eclipse attacks, on

Kademlia networks. They base their proposal on self-
certifying identifiers combined with proof-of-work-based
identifier generation and disjoint key lookup paths. Their
cryptographic scheme for signatures used to authenticate
their nodes relies either on a crypto puzzle, or a central
certificate authority. The latter is required since their se-
curity model is based on effective defences against Sybil
attacks. Other similar strategies against eclipse attacks
base their mitigation schemes on a centralized encryption
authority. For example, Castro et al. (2002) solve the
problem of secure node ID assignment by making use
of a set of central trusted authorities (CAs) to assign
and sign node IDs when joining the network. Likewise,
Fantacci et al. (2009) enhance the Kademlia architecture
and protocol by employing external certification services
to bind node IDs to a public key in a token.

Some of the proposed mitigation approaches pose
additional structural or proximity constraints on neigh-
bour selection. Nonetheless, they still rely on a trusted
authority for the issuance of unique node IDs. Hildrum
and Kubiatowicz (2003) propose to defend P2P sys-
tems against eclipse attacks by enforcing neighbour
node selection based on the minimum network delay.
However, these approaches negatively affect the perform-
ance by introducing additional overheads and impeding
optimisations.

Having provided an overview about peer-to-peer
security measures, we now discuss Android security, as
the second pillar of our approach.

2.1 Android as Trusted Computing
Base

Since Android security in general has been discussed
extensively in existing literature and is well documented
by Google, we only recap the basics and focus on recent
features, such as key attestation, that elevate Android
smartphones to a trusted computing base (TCB).

2.1.1 Android Security

To prevent applications from accessing arbitrary data, the
Android operating system uses sandboxing in combina-
tion with mandatory access control. The former concept
is realised by assigning a unique user ID to each pro-
cess, while the latter relies on SELinux (Android Source,
2019b). As sandboxing is implemented purely in soft-
ware, a compromised or altered OS (like a custom ROM)
allows for circumventing these restrictions. With the
introduction of Trusty (Android Source, 2019c) Google
has taken action to prevent access to cryptographic keys
in such scenarios by relying on trusted hardware.
Since Trusty is a trusted execution environment (TEE)
designed to perform only predefined tasks, it is isolated

from the system by hardware and software, meaning
interaction from the operating system is only possible
through a dedicated interface. With the absence of any
means to export keys, cryptographic binding to hardware
is enforced at the cost of limiting the TEE to operations
defined by the interface. With the support of hardware
security modules (HSMs) in Android 9, even stronger
security guarantees are provided. Smartphones equipped
with such an HSM must have it “certified against the
Secure IC Protection Profile BSI-CC-PP-0084-2014 or
evaluated by a nationally accredited testing laboratory”
(Android Source, 2019a, p. 128). This essentially certifies
the HSM as tamper-proof hardware that protects key
material to a degree equivalent to smart card standards.

Although keys might not be extractable, managing key
access is managed by the operating system and thus relies
on the integrity of the system. System integrity is ensured
by a verified boot process, which is heavily dependent on
trusted hardware and thus cannot be circumvented using
software-only mechanisms.

2.1.2 Remote Attestation

Even though the verified boot process ensures system
integrity, the user might still be able to influence the exe-
cution of an application at runtime, as static or dynamic
code integrity checks are not an integral part of Android.
Software-only attestation mechanisms like SafetyNet (An-
droid Open Source Project, 2018) can be circumvented
by rooting tools like Magisk!, thus demonstrating the
need for a reliable attestation mechanism implemented in
hardware. As a requirement for this kind of attestation,
the device has to be outfitted with a TEE or HSM. As
mandated by Google, these hardware modules are pre-
loaded with an X.509 certificate and a signing key during
the manufacturing process (Android Source, 2019a). We
refer to this certificate as the attestation certificate and the
attestation key, respectively. In addition, a chain leading
up from the signing certificate to a Google-signed root
certificate (which is publicly available) is provisioned
during the manufacturing process.

Harrware-based remote attestation thus makes it possible
to verify that cryptographic keys created by an applica-
tion are actually stored in hardware. Moreover, recent
Android versions (8.0 and later) enable attesting app
integrity, which is a key enabler of trusted computing.
This process works as follows: The HSM/TEE queries
verified boot and bootloader lock state, as well the hash
of the certificate that was used to sign an application. The
output of this attestation process is a certificate, signed
by the attestation key in hardware and then returned
to the application, containing all queried information
as certificate extensions. Thus, it becomes possible to

"https://topjohnwu.github.io/Magisk/

remotely verify these values. If the trust chain up to the
Google-signed root certificate holds, the bootloader state
is attested as locked and the system image as verified, we
can assume an uncompromised device. As for verifying
app integrity, the mentioned hash of the app’s signature
certificate can simply be checked against a precomputed
hash value (typically published by the app’s developer).
Thus, attested applications run on a TCB and generated
cryptographic material is securely stored in hardware and
therefore bound to a physical device.

Almost all upcoming devices with Android 8.0 or later
are expected to support hardware-backed key attestation
according to the FIDO Alliance (FIDO Alliance, 2018).
This kind of hardware-based attestation enables the
practical implementation of security models previously
proposed only in theoretical scenarios. The following
section introduces the Master of Puppets and explains
how it utilises this fact to deliver practically secure P2P
networking in a fully decentralised context.

3 THE MASTER OF PUPPETS

This section presents our approach towards practically
secure, fully decentralised P2P networking by binding the
creation and operation of peer-to-peer nodes to trusted
devices as discussed in Section 2.1.2. We present how
this previously purely theoretical thought experiment can
be transformed into a practically feasible solution. We
achieve this by harnessing already deployed Android
devices whose trusted state can be verified remotely.
Our solution is based on the S/Kademlia (Baumgart
and Mies, 2007) extension of the Kademlia structured
P2P network and supports the following operations:

Ping: Probes a node to see whether it is online

Lookup: Queries the network for IP address and port
of a node based on its identifier.

Store: Stores some data among the set of nodes whose
identifiers are closest to the data’s hash

Find: Retrieves some data based on its hash

We rely on Android’s remote attestation capabilities to
defend against Sybil attacks. Therefore, a recent Android
device is needed to operate a network node. Thus, we
require an Android application to be run on a suitable
device as defined in the following section.

3.1 Targeted Devices

We base our definition of the targeted device set on the
features discussed in Section 2.1. Devices must feature a
hardware-backed keystoreand must provide all remote
attestation capabilities introduced by Android 8.0.

While we have validated that these requirements
rule out some devices that were released with older
Android versions that received an 8.0+ update, we still
conservatively estimate at least 100M suitable devices
deployed as of February 2019. This figure is based on
matching Android version market shares against sales
numbers of popular handsets: Samsung’s Galaxy S9
device range alone accounts for > 45M devices (Statista,
2019). Huawei’s P20 family has sold an additional 16M?,
and its Mate 20 series > 10M3. Moreover, if we estimate
a typical device life time at two years, compatibility
issues will become irrelevant in the foreseeable future.

3.2 System Model

As the Master of Puppets is based on Kademlia, it shares
most of its basic characteristics, like the XOR distance
function and the iterative node lookup procedure. We
therefore do not reiterate about these basic properties at
this point and only describe where our system deviates
from the vanilla Kademlia design.

First and foremost, we borrow the core ideas from
S/Kademlia and mandate self-certifying identifiers based
on public key cryptography as well as disjoint paths for
node lookups. We do not modify the original Kademlia
lookup procedure in any other way.

In essence, each message contains the identifier of
the sender, which is bound to the possession of a private
key that is used to sign this message. Thus, anyone can
verify the origin of each message. As initially stated,
our defence against Sybil attacks is based on Android’s
remote attestation features.

Apart from identifiers binding to an Android device,
this design aligns with the security concepts outlined in
Section 2 and results in a robust P2P network, as long as
a defence against Sybil attacks is in place.

3.3 Remote Attestation-Based Identifier
Preliminaries

As our design mandates Android-device-bound keys for
identifier creation, we discuss the process of obtaining a
self-certifying identifier and its structure. We then explain
how this can be integrated into the above system model
and argue why this is practically feasible.

The foundation of identifier creation is a suitable
Android device as described in Section 3.1 (equipped with
either a TEE or and HSM). Our system therefore requires

Zhttps://consumer.huawei.com/en/press/
news/2018/huawei-annual-smartphone-shipments—
exceed-200-million-units/

3nttps://consumer.huawei.com/en/press/news/
2019/huawei-mate-20-series-shipments-exceed-
10-million-units/

an Android app to generate a public/private key pair using
Android’s hardware-backed keystore implementation and
have it attested. This results in the following data:

e App metadata (including app signature certificate’s
hash)

e Key metadata (algorithm, public key fingerprint, ...)
e Bootloader lock state (one of locked, unlocked)

e Verified Boot state (one of Verified, SelfSigned, Un-
verified)

These values are encoded into an X.509 certificate as
extensions and signed using the attestation key provi-
sioned into the trusted hardware during the manufacturing
process. The signed certificate, including the certificate
chain leading up to the root certificate published by
Google, is returned to the application.

If we mandate the Google root certificate as root of
trust on all nodes, we can validate the authenticity of such
an attestation result. As we aim for a fully decentralised
design, this happens offline, and no third party is involved
in this process. By checking whether the boot chain is
Verified for a system running on a locked device, we can
make sure that the Master of Puppets’ Android app is
running on a trusted device. By comparing the hash of its
signature certificate contained in the attestation result,
we can further ensure that an unmodified version of the
app is used, thus establishing trust in installed instances
remotely.

By deriving a node’s identifier from its attestation
result, we can ensure that the identifier of each node
in the Master of Puppets’s P2P network is bound to a
physical, trusted device and thus prevent the creation of
multiple identifiers per device. The following section
provides detailed information on how this is achieved.

3.4 Preventing Sybil Attacks through
Device-Bound Identifiers

Applying the proposed process to the system model
defined in Section 3.2 aligns with the concept of self-
certifying identifiers, since receivers can directly validate
the authenticity of every incoming message by match-
ing its signature against the included identifier. Yet,
this still leaves one attack vector: Android enables the
creation of multiple user accounts per device—each
with its own set of apps and data. To prevent this scen-
ario, we designed our Android app such that it also
includes the hash of a device’s International Mobile
Equipment Identity (IMEI) (or mobile equipment identi-
fier (MEID), in case of a CDMA device) as part of the
self-certifying identifier. Thus identifiers in our system
are computed as SHA3-256 (SHA3-256 ($IMEI/SMEID)
| |Sattestation_cert).

A comprehensive discussion about the security prop-
erties of our approach is provided in Section 4 that deals
with our system as a whole, and also discusses attack
costs compared to existing solutions relying on resource
testing. Before going into more detail about security
properties, we present the remaining details of our system.

3.5 Efficiency and Overhead

Relying on a whole certificate chain that can easily
exceed 1kB for messages whose payload is often less
than 100B is not practical. We utilise a key property of
the certificate chain to remedy this issue, originally aimed
at preventing device identification: Google mandates
that no less than 100k devices share an intermediate
certificate (Android Source, 2019a). Therefore, our design
only mandates the attestation certificate to be present in
messages as the self-certifying identifier and omits the
full chain. Instead, receivers can enquire the full chain
if they receive a message whose signature cannot be
verified due to missing intermediate certificates. Each
node is obliged to store all certificate chains received,
which, in time, leads to all nodes learning all chains.

Matching this approach even against all > 2.3 billion
active Android devices (van der Wielen, 2018), ~ 21%
of which are running Android 8+* (the majority of which
are not within the set of targeted devices) still only results
in ~ 5000 possible certificate chains. This approach
reduces the overhead introduced through the Master of
Puppets to less than 256B per message.

3.6 Architecture

Although our design mandates the use of an Android app,
this does not necessitate burdening resource-constrained
mobile devices with the operation of network nodes.
Instead, the Master of Puppets offers two distinct modes
of operation:

Mobile-only: Using only the Android app to operate a
node directly on a mobile device.

Phone-bound: Outsourcing only identifier generation
and message signing to the Android app from another
device (typically a PC or a laptop) operating the
actual node. For the remainder of this paper, we refer
to this device as the host.

The mobile-only mode of operation is self-explanatory
from an architectural point of view. Therefore, we do not
focus on it and instead elaborate on the phone-bound
mode of operation and its implications.

“https://developer.android.com/about/
dashboards/

3.6.1 Universal Trust using Phone-Bound Nodes

By only relying on a mobile device running the Master
of Puppets’ Android app for cryptographic operations
involving private key material, the device becomes not
much more than a universally trusted smartcard. Com-
pared to previously theorised approaches using smartcards
or trusted computing concepts, we solve the trust problem
by relying on devices that are already trusted on a global
scale. The Android app is designed such that it only
supports a single host, to still uphold the premise of
requiring a distinct device for each node. To achieve this,
we mandate an authenticated channel between host and
phone.

Smartphone with
Attestation Cert
and Signing Key

Host with Binding Key

O
o
Convey Binding Public Key

M) >
© >

Transmit Attestation Certificate

Generate
Ephemeral
Key Pair

Generate
Ephemeral
Key Pair

Sign Ephemeral Sign Ephemeral
Public Key with Public Key with
Signing Key Signing Key

< GbH >

>

Exchange Signed Public Keys

Compute
Secret Key

Compute
Secret Key

Establish Secure Channel

Figure 1: Binding host to phone and establishing a mutually
authenticated channel using ECDHE key agreement

3.6.2 Authenticated Phone-Host Channel

We accomplish mutual authentication based on an Elliptic
Curve Diffie-Hellman ephemeral (ECDHE) scheme to
efficiently establish authenticated, end-to-end encrypted
communication between the Android app and the host
(see Figure 1). The phone is identified using the private
key matching its attestation certificate. We refer to this
key as the signing key. The host, on the other hand,
generates a public/private key pair. This is called the

binding key. Binding the host to the phone works as
follows:

1. The host’s public binding key is convened to the
phone, by scanning a QR-code off the host’s screen.

2. The attestation certificate is transmitted to the host.

3. Having established a binding, both phone and host
generate an ephemeral public/private key pair to
engage in an ECDHE key agreement process to create
a mutually-authenticated communication channel:

(a) The phone signs its ephemeral public key using
its signing key and the host signs its ephemeral
public key using its private binding key.

(b) The signed ephemeral public keys are exchanged.

(c) Both parties compute a secret key based on their
ephemeral private keys and the received signed
ephemeral public keys (using ECDH).

4. Phone and host establish a communication channel
based on the previously computed secret key.

For the actual transmission of message digests and signa-
tures values, we employ the ChaCha20 (Nir and Langley,
2018) stream cipher and use the secret key agreed upon
between host and phone during the ECDHE key exchange.
Utilising a stream cipher does, by definition, not introduce
any payload overhead, once a communication channel
has been established. Consequently, throughput even
on low-bandwidth links (like Bluetooth Enhanced Data
Rate (EDR)) is not impaired. We mandate re-keying
every 232 messages as a middle ground between security
margin and overhead.

Most probably, the key material created on the host
will not be stored in hardware and is thus extractable
and can be replicated. This, however, has no impact on
the overall security of our network design: Binding the
host to a phone is only required to prevent unauthorised
third parties from utilising the phones of others. Even
if a malicious entity copies their binding key to a huge
amount of host devices, signing messages would still be
done by a single phone. Consequently, this entity would
still only present a single identity to the network.

Having means in place to establish an authenticated,
encrypted communication channel between the host
and the phone, the characteristics of the transport layer
regarding these properties become irrelevant.

3.6.3 Efficiently Outsourced Signing

From a technical point of view, we mandate a Bluetooth
EDR (Bluetooth SIG, 2019) or WIFI connection between
the Android app and the host. Although Bluetooth EDR
is a low-bandwidth link, it is still perfectly adequate if
we reduce the traffic required to operate a network node
to a minimum. We achieve this as follows:

Firstly, we implement detached signing and detached
signatures as depicted in Figure 2 (assuming an authen-
ticated channel between host and phone is in place): The
phone (1) hashes its IMEI, and the host (1) hashes the
message to be sent, and (2) only transmits the hash to the
phone. The phone then creates a detached signature by
(3) combining the received hash with its hashed IMEI,
and by (4) directly applying the signature operation to
this data (thus skipping the usually required hashing
operation during signature creation). The signed data is
then (5) returned to the host where it is (6) appended to
the message, resulting in a signed message that is bound
to an individual phone.

Smartphone with
Attestation Cert
and Signing Key

Host with Binding Key

|
¥

D><I~

Il
©

Hash IMEI

Compute
Message Hash

6=}

Combine
IMEI+Hash

|

B B

1
1 Return Signed IMEI+Hash

—O)—>

%
@4—

1
1
1
1
1
1
1
Transmit Hash to Phone 1
1
1
1
1
1
1
1

= 1
=5
3 E) Combine Hash + Msg .
% g] to Signed Message]
< 9
s = 1 ’A <_©_I_ 4_/
S A@ —D
L

Figure 2: Creation of a signed message

Secondly, validation of incoming messages happens
on the host and thus puts no strain even on a Bluetooth
EDR connection. This way of producing signed messages
addresses the basic process carried out for the Kademlia
operations (Ping, Lookup, Store, and Find).

4 SECURITY CONSIDERATIONS

Due to its conceptual resemblance of S/Kademlia, our sys-
tem inherits its overall security properties. Consequently,
like S/Kademlia, our design remains secure, unless identi-
fiers can be chosen freely and Sybil attacks can be carried
out. In general, we do not tackle implementations flaws
and deficiencies of cryptographic primitives and consider
such flaws out of scope. By extension, we also do not
cover the area of root exploits on Android. While this
may seem like a limitation, it simply entails that we trust
the platform the Master of Puppets is developed for.

4.1 On Phone-Bound Identifiers

As presented in Section 3.4, the Master of Puppets’ iden-
tifiers are derived by combining an attestation result,
created by trusted hardware with the hash of a device’s
IMEI or MEID and then have these values signed by the
key referenced in the attestation result. Since the attesta-
tion result contains a proof that an unmodified app has
been used (in the form of the hash of the certificate that
was used to sign the app), identifiers cannot be spoofed.
Consequently, any other node in the network can remotely
verify that an unmodified application was used. Since
this happens on every incoming message, it becomes
impossible to establish the presence of compromised
nodes in the network. Although the software running
on the host is not considered trusted, this has no impact
on our security model, since it aligns perfectly with
S/Kademlia. Thus, the security analyses performed on
this design can also be applied to the Master of Puppets.

4.2 Attack Costs

By binding an identifier to the possession of a distinct
device, the cost for identifier generation and node opera-
tion can be estimated in a straight-forward manner. The
cheapest phone we know of (that supports all required
attestation features) is the Nokia I, currently retailing
at €79.00 on Amazon.de. We compare this price tag
for node operation to the figures obtained by Priinster
et al. (2018), who analysed the cost of Sybil and eclipse
attacks for proof-of-work-based identifier creation in
a hardened S/Kademlia network, based on the price of
cloud computing resources. As these prices have not
significantly changed since, these 2018 findings still hold.

4.2.1 Sybil Attack Costs

Priinster et al. reached the conclusion that creating a
million identifiers, even in a hardened S/Kademlia design
mandating a PoW could be priced at roughly some few
thousand Euro, while operating this amount of nodes
would incur running costs of about €33/h for a network
of 1M nodes. If we map this scenario to our approach and
optimise attack costs by relying on cheap Nokia 1 phones,
operating a million nodes, we arrive at initial costs of
€79 000 000. Running costs are essentially depended on
the cost of electricity.

4.2.2 Eclipse Attack Costs

Successfully eclipsing a target node in a network of a
million nodes requires generating some tens of millions
of nodes, as identifier generation using the SHA3 cryp-
tographic hash function is unpredictable due its output
being pseudorandom. In short, a brute-force approach is

the best possible way to obtain the desired identifiers. We
again refer to Priinster et al. (2018) for concrete figures.
Based on this, we can estimate the time it would
take to generate and test 20M identifiers to eclipse a
single target in a network of 1M nodes. We assume an
attacker possesses 20 devices (to be able to operate 20
nodes). Each node generation process requires discarding
the previously generated identifier by clearing the data
of the Master of Puppets’ App and re-initialising it. If
we optimistically assume a duration of 100ms for this
process and have it run in parallel on all 20 devices, it
would take roughly one day to eclipse a target (see Eq. 1).
toeg =20%x10° x ~28h (1)
———

#IDs to try

0.1/3600 / 20
~—— ~~

time per ID in hours # of phones

This is perfectly feasible and does not incur high
initial or running costs. However, it is impossible to
outsource this process, as identifiers are bound to crypto-
graphic keys located inside the phone’s trusted hardware.
Obviously, our solution would fail to defend against
eclipse attacks, without other countermeasures in place.
We therefore introduce a delay of 1 minute into the
identifier generation process. Since this delay is executed
on the phone as part of the remotely attested Android
application, it also cannot be sped up. As this results in a
slow-down factor of 600, generating and testing enough
identifiers to eclipse a single node in a network of 1M
nodes would then take approximately two years.

Even if a malicious entity owns hundreds of devices to
mount an eclipse attack, the victim could simply generate
a new identifier and thus be out of the attacker’s reach. It
is important to note that mounting another eclipse attack
on the new identifier would take the same mount of time
than the initial attack.

S CONCLUSIONS

This work presented the Master of Puppets as a practically
secure approach towards fully decentralised P2P network-
ing. Our design utilises current Android smartphones as
universally trusted smartcards and binds the operation of
P2P network nodes to the possession of a physical device.
Compared to resource testing approaches like PoW, this
prevents attackers from utilising cheap cloud computing
offers to outperform legitimate users. We base our system
on the S/Kademlia P2P network, adapt its self-certifying
identifiers to utilise Android’s key attestation framework
to bind identifiers to the possession of a physical device.
In a nutshell, this means that a distinct device is required
to operate a peer-to-peer network node. This effectively
combats Sybil and eclipse attacks, and shows how it is
now, for the first time, possible to apply trusted computing

to provide secure P2P networking without relying on a
central authority.

Although this limits the potential user base to owners
of supported devices, the popularity of Android still
makes our approach usable by millions of users. As our
design outsources only some cryptographic operations
to phones, even low-end devices can be used. Most
importantly, however, we have shown that it is now, for
the first time possible to utilise a widely available trusted
computing base to effectively combat eclipse or Sybil
attacks without relying on inefficient resource-testing
approaches that can easily be circumvented due to the low
prices of widely-available cloud computing resources.

REFERENCES

Android Open Source Project (Apr. 2018). Protecting against
Security Threats with SafetyNet. URL: https://develo
per.android.com/training/safetynet/ (visited on
11/01/2019).

Android Source (Feb. 2019a). Android 9.0 Compatibility
Definition. URL: https://source.android. com/
compatibility/9/android-9-cdd.pdf (visited on
20/02/2019).

— (2019b). Security-Enhanced Linux in Android. URL: h
ttps://source.android.com/security/selinux/
(visited on 19/02/2019).

— (2019c). Trusty TEE. URL: https://source.android.
com/security/trusty/ (visited on 11/01/2019).
Baumgart, I. and S. Mies (Dec. 2007). ‘S/Kademlia: A Prac-
ticable Approach towards Secure Key-Based Routing’.
In: 2007 International Conference on Parallel and Dis-
tributed Systems, pp. 1-8. DO1: 10.1109/ICPADS.2007.

4447808.

Benet, Juan (July 2014). IPFS - Content Addressed, Versioned,
P2P File System (DRAFT 3). URL: https://ipfs.io/
ipfs/QmR7GSQMI3Cx5eAg6abyRzNdelFQv7uLl6X1lodk
7zrJa3LlX/ipfs.draft3.pdf (visited on 04/01/2019).

Bluetooth SIG (Jan. 2019). Bluetooth Core Specification v5.1.
URL: https://www.bluetooth.org/docman/handl
ers/downloaddoc.ashx?doc_i1d=457080 (visited on
09/03/2019).

Castro, Miguel et al. (2002). ‘Secure Routing for Structured
Peer-to-peer Overlay Networks’. In: OSDI °02, pp. 299—
314. URL: http://dl.acm.org/citation.cfm?id=
1060289.1060317.

Cohen, Bram (Oct. 2013). The BitTorrent Protocol Specification.
URL: http://www.bittorrent .org/beps/bep_
0003.html (visited on 24/04/2017).

Douceur, John R. (2002). ‘The Sybil Attack’. In: Peer-to-
Peer Systems. Ed. by Peter Druschel, Frans Kaashoek and
Antony Rowstron. Vol. 2429. Lecture Notes in Computer
Science. Berlin, Heidelberg, Germany: Springer, pp. 251—
260. 1SBN: 978-3-540-44179-3.

Fantacci, R. et al. (June 2009). ‘Avoiding Eclipse Attacks on
Kad/Kademlia: An Identity Based Approach’. In: 2009
IEEE International Conference on Communications. 2009
IEEE International Conference on Communications, pp. 1—
5.DO0I1:10.1109/ICC.2009.5198772.

FIDO Alliance (June 2018). Hardware-backed Keystore Authen-
ticators (HKA) on Android 8.0 or Later Mobile Devices.
URL: https://fidoalliance.org/wp-content/
uploads / Hardware - backed _ Keystore _White _
Paper_June2018.pdf (visited on 14/01/2019).

Hildrum, Kirsten and John Kubiatowicz (2003). ‘Asymptotically
efficient approaches to fault-tolerance in peer-to-peer
networks’. In: International Symposium on Distributed
Computing. Springer, pp. 321-336.

Levine, Brian Neil, Clay Shields and N. Boris Margolin (Oct.
2006). A Survey of Solutions to the Sybil Attack. 2006-052.
Amberst, MA: University of Massachusetts Amherst.

Locher, Thomas et al. (2010). ‘Poisoning the Kad network’. In:
International Conference on Distributed Computing and
Networking. Springer, pp. 195-206.

Maymounkov, Petar and David Mazieres (2002). ‘Kademlia:
A Peer-to-Peer Information System Based on the XOR
Metric’. In: International Workshop on Peer-to-Peer Sys-
tems. Ed. by Peter Druschel, Frans Kaashoek and Antony
Rowstron. Red. by Gerhard Goos, Juris Hartmanis and
Jan van Leeuwen. Vol. 2429. Berlin, Heidelberg: Springer,
pp- 53-65. 1SBN: 978-3-540-44179-3 978-3-540-45748-0.
DOI1:10.1007/3-540-45748-8_5.

Nir, Y. and A. Langley (July 2018). ChaCha20 and Poly1305 for
IETF Protocols. RFC 8439. Published: Internet Engineering
Task Force Request for Comments. URL: https://www.
ietf.org/rfc/rfc8439.txt (visited on 21/03/2019).

Priinster, Bernd et al. (2018). ‘A Holistic Approach Towards
Peer-to-Peer Security and Why Proof of Work Won’t Do’.
In: 14th EAI International Conference on Security and Pri-
vacy in Communication Networks. Vol. 255. Lecture Notes
of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. Singapore: Springer,
pp- 122-138.

Singh, Atul et al. (2004). ‘Defending Against Eclipse Attacks on
Overlay Networks’. In: Proceedings of the 11th Workshop
on ACM SIGOPS European Workshop. EW 11. New York,
NY, USA: ACM. DOTI: 10.1145/1133572.1133613.
URL: http://doi.acm.org/10.1145/1133572.
1133613 (visited on 21/06/2018).

Statista (2019). Shipments of Samsung Galaxy S series smart-
phones worldwide from 2016 to 2018 (in million units).
URL: https://www.statista.com/statistics/
864691 /samsung-galaxy-s-series-smartphone-
shipments-worldwide/ (visited on 27/02/2019).

van der Wielen, Bernd (Jan. 2018). Insights into the 2.3 Billion
Android Smartphones in Use Around the World. Newzoo.
URL: https://newzoo.com/insights/article
s/insights-into-the-2-3-billion-android-
smartphones-in-use-around-the-world/ (visited
on 28/02/2019).

Zargar, Saman Taghavi, James Joshi and David Tipper (2013).
‘A survey of defense mechanisms against distributed denial
of service (DDoS) flooding attacks’. In: IEEE communica-
tions surveys & tutorials 15.4, pp. 2046-2069.

