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ABSTRACT

In recent Android versions, access to various (unique) identifiers has
been restricted or completely removed for third-party applications.
However, many information sources can still be combined to create
a fingerprint, effectively substituting the need for these unique iden-
tifiers. Until now, finding these fingerprintable sources required
manually sifting through the API documentation to identify each
information source individually. This paper presents AndroPRINT,
a framework that automatically recognizes fingerprintable informa-
tion sources on Android devices. For this purpose it automatically
invokes methods, queries fields, and retrieves data from content
providers. We show that this framework allows automating the
elaborate task of finding such fingerprintable information sources
in different experiments. In these experiments, a variety of infor-
mation sources could be identified, which provide a vast amount of
unique features for fingerprinting. Furthermore, AndroPRINT de-
tected undocumented unique device identification features, which
are a result of manufacturer adaptations. These vendor customisa-
tions even revealed personal data, such as the user’s email address
and cryptographic keys used for cross-device communication. The
fact that this information can be retrieved without the user noticing
means that vendor customisations can effectively defeat the tight
permission system of modern smartphone operating systems.
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1 INTRODUCTION

Many mobile applications rely on personalised advertisements as a
main stream of income [6]. To tailor these advertisements, users
have to be recognised across applications. Many applications use
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fingerprinting to reidentify users [16]. However, with Android 10
Google has removed or limited access to many fingerprintable
information sources [3]. This includes access to camera details,
information about saved WiFi networks, and access to unique iden-
tifiers such as the IMEI or device serial number—some of which
could previously be retrieved without the users granting access to
these identifiers.

This work introduces AndroPRINT, a framework to automatically
discover novel ways to fingerprint individual Android devices (and
thus users) through the use of public API functionality. The general
technique of fingerprinting is already known and is actively being
exploited to track users on the Web through browser fingerprint-
ing [4]. In essence, properties such as screen resolution or installed
fonts can be queried by websites and if a script (such as an advertise-
ment banner or social network integration) is present among many
websites, individual users can be tracked across website boundaries.
AndroPRINT applies this approach to the Android platform and
is able to automatically discover functionality that can be used
to create device-specific fingerprints. Once identified, cross-app
user tracking is easily possible for any vendor of popular libraries,
such as large advertisement networks, which are incorporated in a
vast amount of Android apps. This is possible, because the queried
fingerprints are app-independent. Contrary to querying a user’s
address book, for example, the invocation of API methods identi-
fied by AndroPRINT requires no user consent and thus happens
undetected in the background.

While evaluating the efficacy of our approach, we discovered
fingerprintable features that are perfectly stable (i.e. rebooting a
device has no effect) and unique, thus making it possible to identify
individual users with high probability. To provide one such example,
the full list of ringtones can be queried. Since this also covers any
ringtones added by the user—including the precise timestamp of
loading any custom ringtones onto the device—identifying anyone
using custom ringtones can be accomplished with high confidence.
Moreover, we uncovered a flaw on Samsung devices, which enables
any app to quietly retrieve the e-mail address associated with the
user’s Samsung account used on the device, as well as unique user
and hardware IDs. This in itself already has grave consequences
on user privacy, given that users not only cannot consent, but also
cannot prevent this.

Approach. To find fingerprintable methods and fields in the An-
droid API we use the following strategy:

(1) A smartphone application traverses through the Android
API to collect as much data as possible from fields, methods,
and content providers (a mechanism to pass data between
applications). The application creates objects to fetch fields
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and invoke instance-methods as needed. Constant values are
pre-parsed from the API documentation in order to correctly
invoke methods expecting parameters from a set of pre-
defined constants.

(2) The application is executed on multiple smartphones to col-
lect potentially fingerprintable data. This collection phase
is carried out twice on each device to detect and remove
data which is changing between application restarts and
reinstallation.

(3) Utilising our analysis framework we then search the swath of
collected data for fingerprintable information. In this regard,
values which differ on the same device are cleaned from
the data. The collected values which differ between devices
are marked as fingerprintable. While not strictly needed for
fingerprinting, we manually categorise the fingerprintable
data to ease human interpretation of the results.

While smartphone fingerprinting has received some attention in
the past [19], we are the first to present a fully-automated approach
that does not require any a-priori knowledge about the semantics
of the Android API. More details on our contribution are provided
below.

Contribution. While the primary goal of AndroPRINT is auto-
mated identification of functionality which enables device finger-
printing, our contribution as a whole is fourfold:

(1) We present the first framework to automatically detect fin-
gerprintable information on Android. We extend an existing
tool to traverse the Android API Using this approach we
collect fields and return values which contain possibly fin-
gerprintable information.

(2) We dump all accessible content providers referenced in the
Android API, thus uncovering (possibly undocumented) ways
of cross-app information sharing, which can also be exploited
to enhance fingerprinting accuracy.

(3) We introduce an analysis framework which removes spuri-
ous data and analyses the collected data from multiple de-
vices for fingerprintable information. We analyse the results
and categorise the identified methods, fields, and content
providers.

(4) We uncover previously unknown unique user and device
identifiers which are a result of vendor customisations.

Outline. The rest of this paper is organized as follows: The follow-
ing section discusses related work. Section 3 then provides insight
into how we systematically gather information from the Android
API and how we analyse this information. Afterwards, Section 4
discusses the coverage our approach achieves and lists the results.
Based on this, Section 5 discusses our results, limitations of the ap-
proach, and potential countermeasures. Finally, Section 6 concludes
this paper.

2 RELATED WORK

In the following paragraphs we discuss related work. Especially
browser fingerprinting has sparked a lot of interest in the research
community. Various papers have been written on the possibility
of browser fingerprinting and mitigations against it. The follow-
ing paragraph discusses the work on browser fingerprinting. In
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comparison, mobile device fingerprinting has received less atten-
tion. We introduce the existing work in the subsequent paragraph.
Finally, we present related approaches which use automation to
detect vulnerabilities on smartphones.

Browser Fingerprinting. Browser fingerprinting can be used to
identify a user across different web pages without storing data,
such as cookies, locally in the browser. Eckersley [4] has collected
information, such as the user agent, HTTP headers, or browser
settings to show that it is possible to fingerprint users. The paper
shows that the collected fingerprints change over time. However,
as only parts of the fingerprint change at one point in time the
collected fingerprints can still be connected to a user if observed
regularly. Eckersley shows that certain privacy enhancing browser
extensions are actually detrimental to the users privacy as they
improve fingerprintability. For example, an extension that changes
the user agent to a unique string could allow to uniquely identify a
user.

Cao et al. [1] show that systems can be fingerprinted using
hardware and operating system peculiarities. They use differences
in rendered pictures, varying feature support of the web audio
API, and the number of logical cores to create a fingerprint. Such
fingerprints allow user tracking across different browsers and even
operating systems.

Starov and Nikiforakis [15] show that it is possible to fingerprint
a browser based on the installed extensions. Most browsers do
not allow direct access to the list of extensions. However, certain
extensions alter the content of the DOM. Based on these changes
the authors show that it is possible to infer the extension. Sanchez-
Rola et al. [11] use a timing side channel to detect activated browser
extensions. Depending on the time it takes to access the resources of
an extension they can infer whether or not the probed extension is
installed. Furthermore, leaked internal extension URLs allow them
to detect further extensions.

Schwarz et al. [12] use an automated approach to detect differ-
ing JavaScript properties in browsers which enable inferring the
underlying hardware. The authors argue that their approach allows
them to automatically construct browser fingerprints and tailor
microarchitectural attacks to the detected hardware.

In addition to detecting features which can be used to create
browser fingerprints, work has also been done to hamper or thwart
browser fingerprinting. The Tor browser reduces fingerprintability
of their users by a combination of different techniques, such as
employing letterboxing to only allow for coarse-grained scaling of
the browser’s window and disabling or spoofing certain local infor-
mation sources that could be queried using JavaScript or CSS [10].
Firefox also adopted some of the anti-fingerprinting features spear-
headed by the Tor Browser, which can be activated as part of the
enhanced tracking protections [18].

FPGuard [5] tries to detect fingerprinting behaviour of websites
using heuristics. It monitors access to fingerprintable information
sources, such as the navigator object, canvas elements, or loaded
fonts. If a website exhibits suspicious behaviour FPGuard tries
to alter the fingerprint to avoid user identification. Similarly, Pri-
Varicator [9] randomises fingerprintable information to avoid the
linkability of fingerprints. FP-Block [17] randomises fingerprint-
able information, but does so only cross-domain to avoid breaking
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certain functionality on websites. However, such changes can often
be detected by searching for inconsistent or missing information
(4, 12].

While the ways to identify users based on browser functionality
are diverse, the general principle is always the same and it is also
applicable to the environment of smartphone apps. Like JavaScript
is restricted to using functionality implemented by browsers, An-
droid apps consume APIs defined by Google (naturally, the same
principle also applies to Apple’s iOS) and possibly extended by the
smartphone vendor (only applicable in the Android case). Thus the
same approach used for browsers is also applied to smartphone
fingerprinting as outlined below.

Smartphone Fingerprinting. Kurtz et al. [8] pick 29 configura-
tion features from the iOS SDK to show that fingerprinting iOS
devices using non-unique identifiers is feasible. The authors collect
fingerprints from different devices and show that it is possible to
re-identify returning users with high probability. Similarly, Wu et al.
[19] manually identify 38 different information sources which can
be used to fingerprint Android devices. The identified sources are
evaluated using three different algorithms using a dataset of col-
lected fingerprints. Torres and Jonker [16] search for fingerprinting
behaviour in Android applications. They identified eight different
advertising, analytics, and authentication libraries which exhibit
fingerprinting behaviour. Related to fingerprinting, Jing et al. [7]
collect various data from the file system, Android API, and system
properties to differentiate emulated from real devices. They limit
the collection of information from the Android API to a small subset
of the APIs exposed by system services which do not require any
parameters.

As AndroPRINT aims at automated detection of fingerprintable
information, a different, more exhaustive approach is required. We
therefore also briefly touch automated vulnerability detection, as
our approach relies on similarly automated workflows.

Automated Vulnerability Detection on Smartphones. ProcHar-
vester [13] is a tool to automatically find side channels in the /proc
file system of Android. It searches for changes in the statistics pro-
vided in the /proc file system to infer user actions. SCAnDroid [14]
is a framework to detect side channels in the Android API The
framework automates the invocation of methods and identifies
methods which react to different user actions. Both approaches use
machine learning to assess the gathered data and infer the actions
performed on the smartphone.

3 METHODOLOGY

AndroPRINT’s core boils down to systematically issuing calls to the
Android API from within an Android app that has been specifically
created for this purpose. The information gathered this way is
subsequently analysed off-device to actually interpret the gathered
results with respect to fingerprintability of individual API calls.
Automating API calls relies heavily on reflection. However, not all
information required to issue some constructor or method calls
(such as parameters that are only allowed to take some constant)
can be extracted from the bytecode. In order to work around this
limitation, the Android API documentation is parsed for such values
which are then fed into the Android app.
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This results in an overall three-tier process whose phases are
called preparation (parsing API documentation), collection (auto-
mated invocation of API calls, and recording the results), and evalu-
ation (actually interpreting the collected data). The fully automated
nature of AndroPRINT’s approach not only makes it possible to
cover a vast amount of the Android API without manual inter-
vention, but also results in a robust and sustainable approach that
remains applicable even for future versions of Android.

The remainder of this section discusses these phases in detail and
elaborates on how and why this produces tangible results.

3.1 Preparation Phase

As mentioned, some information that is not available on the device
during runtime needs to be parsed from the publicly available An-
droid API documentation. This is one key task of the preparation
phase. In fact, however, we parse information about all documented
classes, their methods including the parameter names, and all con-
structors with their parameters. The gathered data is fed into the
Android app which is used to invoke API methods during the col-
lection phase. The app uses this data to create class objects, invoke
methods, and query fields. The basic parsing of Android API doc-
umentation and the smartphone application which collects the
data is in parts based on the SCAnDroid framework [14]. It has
been enhanced with support for field access, content providers, and
improved coverage by handling constants and objects of derived
types.

In addition to gathering the structure of the Android API, possi-
ble constants are parsed. These constants are usually defined in an
HTML table specifying the parameters, their type, and a descrip-
tion of their usage. The usage description usually also contains
possible constant values. However, it does not have a structured for-
mat. Thus, we define the text content of all hyperlinks and HTML
code blocks as possible constants. As can be seen in the figure, this
methodology may miss some constants which are located in the
plain text. Therefore, we also search the remaining text for possible
constants by including all words which contain dots. This broad
selection of possible constants also includes statements which are
either in fact not constants or for some other reason not inter-
pretable. These invalid values, however, do not have an impact, as
they are automatically discarded when fed into AndroPRINT’s app
during the collection phase.

3.2 Collection Phase

In the collection phase possible fingerprintable information from
the Android API is gathered. In order to collect this data the return
values of methods, field values, and content providers are aggre-
gated. To invoke these methods and fetch the values of fields all
of the classes of the Android API are systematically queried. The
previously parsed list of classes and methods are used as a starting
point for the collection. The classes in this list are queried via Java
Reflection. All of the declared methods and fields in these classes
will be invoked or fetched. This also includes public methods and
any fields which are not described in the API documentation. Static
methods and fields can be called or queried without creating a class
object. For all non-static methods and fields a corresponding class
object has to be created first. The following section shows how
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these objects are created, how constant values are interpreted, and
how the methods and fields have been selected.

3.2.1 Initialisation. In the initialisation process the parsed constant
values are interpreted first. After that, the required class objects are
created. Last, the methods are invoked to collect the return value
and fields are queried.

Interpretation. To interpret the parsed constants and all prede-
fined values, the BeanShell® script interpreter is used. BeanShell is
fed the values as string representation and returns the interpreted
values. The interpreted values are then stored for the upcoming
phase. All non-interpretable constants are discarded in this step.

Object Creation. Invoking non-static methods or querying non-
static fields requires the instantiation of an appropriate object. The
object has to be of the type that implements the method. If a method
takes parameters it is furthermore needed to create objects for these
parameters. Parameter types can be elicited at runtime via the re-
flection APL If these are parameters of a primitive type such as
int or boolean, the required objects can be created via the Java
wrapper types such as Integer and Boolean. The values for these
primitive types can be predefined individually for each parame-
ter of each method. If no individual default value has been set, a
global predefined value for each type, such as 0 for integers, will be
used. To connect the predefined values with the invocation of the
method the name of the parameter has to be known. However, the
name of parameters cannot be queried at runtime. Thus, we utilise
the data gathered during the preparation phase to connect param-
eters with their names. This allows us to predefine values such
as packageName or pid, which are needed to successfully invoke
certain methods.

To create objects of non-primitive type, their class’s constructors
will be fetched and invoked at runtime. The created objects will be
saved for later use. If a constructor takes parameters, these will be
created analogously to the method invocation process described
before.

Method Selection and Invocation. To reduce side effects, only
methods which are usually associated with data gathering are in-
voked. Therefore, the set of methods to be invoked is reduced to
methods containing the following prefixes: get, has, is, query, and
support.

These methods can either return values of primitive or non-
primitive type. Return values of primitive type usually contain one
piece of information. Non-primitive return values, in contrast, can
comprise a plethora of information. They may also include further
methods which can be invoked to extract information. Therefore,
these two groups are treated separately. Any primitive values re-
turned by a method are saved to a file for later analysis. However, if
a method returns an object, the object will be explored. The process
is equal to directly created objects, i.e., all methods and fields will
be invoked or queried. Since this process can potentially continue
endlessly, the framework stops when the maximum call depth is
reached. For the experiments this call depth has been set to 3 as
this represents a sweet-spot in the trade-off between accuracy and
execution speed.

Ihttps://github.com/beanshell/beanshell
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The objects which have been returned from methods have to
be affiliated to a parsed class first. This is required to associate
predefined values and constants for parameter creation, in case
of parameters that are expected to only take predefined values. In
order to create this connection the name of the class is elicited via
reflection. The framework then checks whether or not the class is
existing in the list of parsed classes. However, this direct comparison
only works if an object is of exactly the same type as a parsed class.
In practice, however, these objects can also be of derived types
which are not explicitly treated in the documentation. Therefore,
we also check whether or not the object is derived from any of the
parsed classes. If that is the case, we use the parsed information
of the base class. Thus, all predefined parameters for methods of
the base class can be used during invocation, while for additional
methods of the derived class the default values for each data type is
used. Otherwise, the default values are used for all methods. All of
the gathered return values will be saved to a list for later analysis.

Field Evaluation. In addition to invoking methods, all of the
accessible fields of the API will be queried. In order to query them,
the objects created for the invocation of methods and the non-
primitive return values of methods will be used. The value of these
fields will also be saved in a list for later analysis.

Content Provider. A content provider on Android provides an
abstract interface for accessing data. Similar to a database, the con-
tents can be queried in the form of rows and columns using a cursor.
Most of the system-provided content providers, such as the one for
contacts, require a permission to access the data represented by the
content provider. However, this is not always the case, although
a valid content URI is needed to access a content provider. These
URISs start with the prefix content://. To get the content URIs of
the system-provided content providers, we analyse each queried
field and each returned string value during method invocation. If a
string starts with the prefix, the URI gets stored for later retrieval.
Once the method invocations and field evaluations are done, the
content of all detected and accessible content providers is dumped
by iterating over all rows and columns. Similar to return values and
fields, the dumped data is stored for later analysis.

3.3 Evaluation Phase

To detect possibly fingerprintable information, data from multiple
devices have been collected. This data is analysed in the evaluation
phase. In order to compare the data gathered from different devices,
it is cleaned prior to comparison, as elaborated on in the following
section.

3.3.1 Data Cleaning. By predefining multiple values or constants
for a single parameter, methods can be invoked multiple times.
Likewise, by calling methods of returned objects, a method can
be called several times on different objects. Therefore, a single
method or field can occur multiple times in the list of results. These
occurrences are condensed in the cleaning step. In case the return
values of these invocations do not differ, the different occurrences
will be unified. Otherwise, the differing values will be kept for the
analysis step.

On each device all obtainable information is collected twice.
Between the two collection processes, the application is removed
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completely. Afterwards, it is reinstalled using a different signing
certificate to start the second collection. We use a different signing
certificate to emulate a second application using an identical track-
ing library trying to detect the user. This allows us to eliminate
all information sources which differ between application installs,
such as the user ID or the data directory of the application. In ad-
dition, this measure makes it possible to exclude any information
sources which change with application restarts, such as thread and
process IDs, process times, or temporary native instance identifiers.
However, some of these removed sources may in fact provide finger-
printable information. For example, the elapsed process time could
be used to deduce the speed of the device. However, interpreting
all of the changing values requires deeper knowledge about the
peculiarities of each of these values. Therefore, we consider them
out of the scope of this paper. Thus, these will be removed from the
list of results.

3.3.2  Analysis. In the analysis step, the previously cleaned data of
different devices is compared. The analysis framework discards all
information sources which report the same value across all of the
evaluated devices. If a method or field only exists on a subset of the
tested devices, the reported values will only be compared across
these devices. All of the information sources that differ between
devices are marked as potentially fingerprintable. The list of finger-
printable data sources is finally sorted by class. For the following
evaluation, this list is then categorised for better comparability.

4 EVALUATION

The following section discusses the coverage of constants, methods,
fields, and content providers. The subsequent section details the
three different test setups. Finally, we show the obtained results
across the test setups.

4.1 Coverage

Given our approach is fully automated, API coverage is an impor-
tant metric to assess its efficacy. We therefore provide coverage
figures on constants (Section 4.1.1), methods (Section 4.1.2), fields
(Section 4.1.3), and content providers (Section 4.1.4).

4.1.1 Constants. In the preparation phase 15791 possible constants
were parsed from the Android API documentation. 4695 of these
values were relevant, i.e., these values are either used in construc-
tors or are used as parameters for methods which are invoked
by the framework. Because constants are not clearly recognizable
in the documentation, statements that are in fact not constants
were also parsed. This can include, for example, variable names
or types, such as value or Integer. These are included as they are
also written in code blocks or are parts of hyperlinks. Furthermore,
these non-interpretable statements can also include values which
contain one or multiple dots. This includes for example sentence
fragments, such as i.e. or placeholders such as R.array.foo. All of
these occurrences are sorted out in the preparation phase after the
interpretation fails. 1425 of the 4695 values were discarded due to
this. Therefore, 3270 values were interpreted successfully and are
thus usable to invoke constructors or call methods.
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Table 1: Overview of method coverage.

# o
Documented Methods 39803
Relevant Documented Methods 13643
— Corresponding Class Not Found 250
+ Additional Undocumented Public 1388
Methods
= Declared Public Methods 14781 100%
— Methods in Interface or Abstract Class 3296 22.30%
— Missed Methods Due to No Object 5433 36.76%
— Exception During Invocation 936 6.33%
— Blacklisted 11 0.07%
= Theoretically Invoked 5105 34.54%
Actually Invoked 7528  50.93%

Table 2: Overview of content provider coverage.

Declared Content Provider URIs 175
— Content Provider not Accessible 1
— Permission Required 136
— Other Exception 3
= Successfully Dumped 35

4.1.2  Methods. Table 1 shows an overview of the method coverage.
In total, 13643 relevant methods are referenced in the API docu-
mentation. This includes some methods which are not available on
the test device, for example, due to being deprecated. In total, 250
methods of 48 classes were not found on the device. However, an
additional 1388 public methods exist on the device which are not
documented. Thus, 14781 relevant and public methods are available
on the test device. 3296 of the retrieved methods are in interfaces
or abstract classes and can therefore not be created directly. For
5433 methods the corresponding object could not be created via
a constructor. This could be, for example, due to missing parame-
ters or other exceptions. 936 methods threw an exception during
invocation. This can be due to missing permissions or, similar to
constructors, invalid or missing parameters. 11 methods have been
blacklisted due to side effects. This encompasses, for example, the
method java.util.concurrent.CompletableFuture.get as it stopped the
execution of the application. Thus, 5105 methods could be invoked
by directly creating an object via the corresponding constructor. By
exploring the non-primitive return values another 2423 methods
were invoked. Therefore, in total, 7528 or 50.93% of the documented
methods could be called.

4.1.3  Fields. In total, our approach discovered 26495 fields in the
Android API. 24093 of these fields were static fields and did not
require any object to be fetched. Thus, all of them could be retrieved.
Of the remaining 2402 non-static fields, we were able to query 1151.
For the remaining 1251 fields, no appropriate object to retrieve the
fields value could be created. 1414 of the 26495 fields were private
fields. Unlike private methods, fields which have only private visi-
bility can still be fetched via Reflection. 285 of the 26495 fields were
uninitialized, i.e., the retrieved value was null.



ARES 2020, August 25-28, 2020, Virtual Event, Ireland

4.1.4 Content Providers. The overview of the content provider
coverage are depicted in Table 2. In total, 175 content provider URIs
have been found in fields and return values of methods. Of these
175 URIs, one was not accessible as it was a hidden API 136 of the
callable content providers required a permission while three threw
an exception. Two of these exceptions were SQL exceptions due
to non-existing databases, while one was a null pointer exception
which occurred while querying the content provider. Thus, in total,
35 content providers could be queried.

4.2 Test Setups

We conducted our experiments on multiple devices to detect possi-
bly fingerprintable information. Our main test devices have been
two identical Google Pixel 4 devices with 64 GB of memory. Both
have been updated to the latest software version as time of writing.
The devices are running Android 10 with security patches from
March 5 2020. In our first experiment, we evaluate the two devices
for already existing possibly identifiable information. The devices
have been set up in an identical fashion. Therefore, this setup rep-
resents the minimal set of identifiable information. In reality, after
finishing the setup wizard, the device could already have different
networks or display sizes configured and additional applications in-
stalled. In our second experiment, we customise one of the devices
and rescan this device for new fingerprintable information. This
setup of identical devices but varying user configuration allows us
to detect methods, fields and content providers which can be used
to fingerprint a user. In addition, we also compare two Samsung
Galaxy S10e devices running Android 10 to identify if vendor cus-
tomisations provide additional fingerprintable information. Finally,
we also compare results from different devices and vendors. Meth-
ods, fields, and content providers which have been reported in one
setup will not be considered again in the following setups.

The application gathers all data from sources which either re-
quire no permission or a normal permission. According to the API
documentation, normal permissions protect resources which pose
“very little risk to the user’s privacy” [2]. Thus, we check whether
this holds true in terms of fingerprinting. Wherever a normal per-
mission is needed, the number of information sources requiring
a normal permission are annotated in parentheses. However, the
vast majority of information sources in our findings do not require
a permission at all.

4.3 Results

The following sections show the results of the conducted experi-
ments using the aforementioned test setups.

4.3.1 Fresh Setup. On new devices, only a small number of meth-
ods provide potentially fingerprintable information. Our framework
detected 14 methods and one content provider which returned in-
formation that was differing between the devices. An overview of
these information sources can be found in Table 3. These include
information about the installed packages, free storage space, and
accessibility services. Furthermore, the devices index the prein-
stalled ringtones during the first boot. The indexed information is
available via the content://media/internal/audio/media con-
tent provider. In addition to various information about ringtones,
the content provider also allows to query the timestamp of when
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Table 3: Overview of identified methods on a fresh setup. (M
= methods, F = fields, CP = content providers)

Type #M #F #CP
Unstable

Media Timestamps 3 - -
Native Instance IDs - 2 -
User Start- & Unlocktime
Input Method
Uncategorised - 1 -
PPID

Applications

Sum

Stable

Applications
Available Storage
Accessibility Services
Ringtones (Timestamp) - - 1
Sum 14 0 1

- N
'
'

CO| = =
1
1

N Ul
|
|

the ringtone was added. Thus, if the time is set correctly on first
boot (for example, after a factory reset), it is possible to query the
time of device setup to the second.

In addition to the previous information sources, there are some
less stable sources which survive an application reinstallation but
change on device restart. As smartphones can be running for days
or even weeks, such information could still be used to fingerprint a
user. Eight methods and three fields provide such information. This
includes information from the media player, such as current posi-
tion or duration, the calling parent process id, and native instance
identifiers of the used typeface and thread class. Furthermore, the
descriptor of the input device, the version of the media store, and
user unlock and start times also present unstable identifiers. While
new devices do not provide a plethora of potentially fingerprintable
information, smartphones usually get customised by the user to
fit their needs. Thus, in the next step we will compare customised
devices.

4.3.2 Customised Setups. In this setup one of the test devices was
customised by altering settings and installing applications. 511
methods, 100 fields, and 181 rows in content providers yield differ-
ing values. The classification of these information sources can be
found in Table 4. In addition to the methods and content provider
found in the previous experiment, these allow to infer various set-
tings and customisations done to the device. The most noticeable
change in the results were achieved by altering the display and
font size of various elements. The detected information sources
report values such as the display metrics, default sizes of various
UI components, or allocation sizes of bitmaps.

Another noticeable change that affected a lot of methods was
altering the system language. While some methods and fields re-
port the system language directly, others can be used to infer the
language. This for example includes methods which report names
of storage volumes such as Internal Storage vs Interner Speicher or
button labels such as On vs An. Furthermore, changing the system
locale also affected many methods, fields and content provider.
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Table 4: Overview of identified information sources on a cus-
tomised setup. The numbers in parentheses represent the
share of methods which require a normal permission. (M =
methods, F = fields, CP = content providers)

Type #M #F #CP
Unstable
Clipboard Content 13 - -
Boot Count - - 2
Uncategorised - 1 -
Sum 13 1 2
Stable
Element Display Size 88 39 2
Additional Settings (Exist only if modi- - - 109
fied)
Language 105 3 -
Locale 62 2 1
Mobile & WiFi Network Details 44 10
(15)
Applications 13 27 =
Carrier, SIM 29 2 6
Enabled Radios (Mobile Data, NFC, 23 - 2
WiFi, Location) (19)
Accessibility Settings 6 1 17
Currency 22 = =
Input Methods 16 1 3
Bluetooth Settings & Devices 17 - 1
(16)
Timezone 13 3 2
Uncategorised 11 3
Display Settings (Night Mode, Auto- 5 1 8
matic Rotation, Refresh Rate, ...)
Colours 9 3 -
Wallpaper Settings & Colours 12 - -
Caption Settings 3 2 4
Ringer Mode, Do Not Disturb 4 - 4
Default Apps (Dialer, Messages, 6 - 1
Launcher)
Ringtone (Currently Set, List of Added 5 1 -
Ringtones (incl. Timestamp))
Sound Effects = = 6
Audio Volume 5 - -
Font Size 2 1 =
Device Name 1(1) - 2
Device Lock 3(1) - -
Time & Date Format 2 1 -
Widgets 2 - -
Various Timestamps - - 2
Notification Settings - - 2
Password Complexity 1(1) - -
Personalization State - - 1
Screensaver - - 1
Activated Asisstant - - 1
User Restrictions 1 - -
Settings Tiles (Order, Activated) - - 1
Security 1 - -

Sum 511 100 181

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Various accessibility settings can be queried using the Android
APL It is, for example, possible to detect customised reaction time-
outs, disabled animations, key repeat settings, or an adapted long
press timeout. Using the captions AP, it is possible to query the font
size, colours, and locale specifically configured for captions. Fur-
thermore, the device name, if customised, could uniquely identify
a user. Interestingly, accessing the device name via the method an-
droid.bluetooth.BluetoothAdapter.getName() requires a normal per-
mission, while it can be accessed without a permission via content
providers. The Android API also allows to query UUIDs of bonded
Bluetooth devices if a normal permission has been requested in the
manifest. The content://media/external/audio/media content
provider allows to query any custom ringtones added to the “Ring-
tones” directory. It allows to query detailed information about the
added ringtones, such as title, duration, date added, date modified,
file name, or file size. In contrast, querying added music files via
the same content provider requires a dangerous permission.

The AudioManager API provides access to the audio volume
set by the user. While the main volume may be changed more
frequently, the API also allows access to other streams, such as
ringer, notification, or alarm volume. Additionally, security APIs
such as the KeyStore or BiometricManager allow to detect whether
or not a user has setup a device lock or enrolled a fingerprint or other
biometrics. Querying the biometrics requires a normal permission.

The content providers contain some entries only if they have
been modified by the user or applications on the device. Thus, the
customised device contains 109 additional entries which do not
exist on the unmodified device. These include, for example, backup
and night display settings, service URLs, and certificate blacklists.

Additional information sources which have been detected are
the list of installed widgets and applications. These include detailed
information about the applications, such as user ID, resource di-
rectories, and last update time. Changes to default applications for
certain tasks, such as messaging or the dialler can also be queried.
The activated launcher can be queried, for example, by supported
features or icon sizes. AndroPRINT also detected some unstable
information sources, which were changing between device restarts.
These include methods reporting the current clipboard content or
the boot count as reported by a content provider.

In addition to the two Pixel devices, we also analysed two Sam-
sung Galaxy S10e devices using the Samsung Remote Test Lab?.
Both devices are running Android 10. The devices have not been
specifically customised by us, however, they still provided valu-
able identifiers. The additional identified information sources are
depicted in Table 5.

In contrast to the Pixel devices, these two Samsung devices pro-
vide unique identifiers via different settings providers. The devices
allow querying the e-mail address used to sign up for the Samsung
account. Furthermore, any application has access to a user ID which
stays the same across devices of the same user, a device-specific ID,
an access token, and a smart tethering GUID. Using our Samsung
Galaxy S9 running Android 10 with March 1 2020 security updates
we were able to confirm these findings. As this device has an ac-
tive SIM card, further features could be activated which provide
additional unique identifiers. If the “Call & text on other devices"

Zhttps://developer.samsung.com/remote-test-lab



ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Table 5: Overview of identified methods on Samsung devices.
(M = methods, F = fields, CP = content providers)

Type #M #F #CP
Samsung Specific Settings - - 26
Smart Tethering (Account Specific IDs, - - 13
AES Keys, Activation Status, Family

Size)

Timestamps (Security Policy Check - - 12

Time, Settings Activation Times,
Lockscreen Wallpaper Switch Time,...)
ToS Agreement (Status, Timestamp of - - 8
Agreement)
Locale
Device & User ID, Connected Devices - -
Ringtone
Sound Effects - -
WiFi MWIPS Special SSIDs - -
Software Versions - -
Samsung Account Mail Address - -
WiFi Learning Score = =
Accessibility Settings - -
Logging Counts = =
WiFi P2P Device Name - -
Access Token - -
Uncategorised - -
SIP Address - -
Colours - -
Resource IDs - -
Theme Package - -
Sum 2 0

O S S S S I SR CH RO O O SRR O |

Nol
O

feature is activated, a SIP address can be queried which consists of
the device ID and the access token. Additionally, the device ID and
the user-settable device name of all devices connected via the “Call
& text on other devices" are accessible. If the smart tethering feature
is activated across family members, additional IDs can be queried.
Furthermore, AES keys used for this smart tethering service can be
retrieved. This smart_tethering_AES_keys entry contains what
seem to be five 256bit AES keys and five timestamps. It seems that
each AES key is valid for one month, as the five timestamps are all
set in the future, each one month apart. After identifying all these
unique identifiers, we have contacted the Samsung Mobile Security
team on April 8, 2020 to disclose our findings responsibly. The find-
ings have been acknowledged as a high severity vulnerability and
are being fixed by Samsung.

In addition to the detected identifiers, AndroPRINT found multi-
ple Samsung specific settings, such as edge or game settings, which
differed between the two devices. Other differing values include
different timestamps, such as feature activation times down to the
second, agreement status to various Terms of Service, and software
versions of proprietary services.

4.3.3  Cross-Device Setup. In the cross device setup, the results
of different devices from various vendors are compared. In total
AndroPRINT detected 193 additional methods, 154 fields, and 177

Gerald Palfinger and Bernd Priinster

Table 6: Overview of identified methods on a cross-device
setup. The numbers in parentheses represent the share of
methods which require a normal permission. (M = methods,
F = fields, CP = content providers)

Type #M #F #CP
Resource IDs 14 101

Vendor Specific Settings 1 - 68
Display Size 23 5 3
Radio Features 13 (1) 5 9
Implementation Differences (View In- 15 7 3

stances, DownloadManager Database
Structure,...)

Build Infos 2 20

Screen Characteristics 16 2
Volume, Audio Effects 3 2 14
Uncategorised - 1 16
Applications 5 4 5
Supported Locales & Timezones 13 - -
Input Devices (Hardware, Features, IDs) 9 - 3
Audio Support 11 - -
CP DB Structure = = 10
Sounds - - 10
Java Runtime Differences 9(2) - -
Media Codec Support 9 - -
URLs 1 - 7
Developer Settings - - 8
MultiSIM 7 - -
Storage Size (Internal, External, Cache) 6 -

Default Colours 4 -
Bluetooth Device Settings (Contain - - 5
MAC Address)

Hardware Features 5 - -
Camera Details 2 3 -
Screensaver Settings = = 4
Available Permissions 2 2 -
Notifications - - 4
Supported Gestures - - 3
Additional Hardware Support 3 - -
RAM, Memory Class 3 -

Device Policy 2 - -
Encryption Status 2 - -
Default Dialer 2 - -
Multiple User Support 2 - -
GPS Hardware Details 2 - -
MMS User Agent 2 - -
Mount Paths - 2 -
Admin Applications 1 - -
Location Background Throttling 1 - -
Whitelist

Security Providers 1 - -
System Fonts 1 - -
DRM Engines 1 - -
Sum 193 154 177
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values in content providers which allow to detect device vendors
and models. In particular, various resource IDs differed between the
devices. Another category of values which differed between devices
are vendor specific settings, such as gesture, pocket detection, or
custom LED indicator settings. Similar to the previous experiment,
the display size and resolution are again a distinctive feature be-
tween devices. AndroPRINT detected information sources which
in particular report physical characteristics of the display, such as
DPI values or physical dimensions. In addition to the dimension of
the display, the supported features also differ between devices. This
includes information sources which report, for example, refresh
rates, HDR, or wide colour gamut support. The test devices also
differ in the number and types of supported locales and the version
of supported time zones, even on devices having the same security
patch.

Another category of information sources which report different
values across devices are information sources reporting hardware
features. Using the different storage APIs it is possible to query the
size of all storage volumes and partitions. Furthermore, the main
memory of the device can also be queried using different methods.
Additional hardware features which affect the reported values in-
clude radio features, multi SIM support, the number of available
cameras, the camcorder quality profile, and support for features
such as hearing aids or WiFi display. Additionally, it is possible
to query the default dialler, differences in the audio handling, and
security features such as encryption types, or device ID attestation
support.

Some of the encountered differences stem from implementation
and runtime differences. These categories consists of differences in
the number of view instances, differences in database structures,
varying line numbers, or buffer sizes.

Some of the devices, such as the Pixel 2 or the Galaxy S9, contain
settings which comprise the MAC address of connected Bluetooth
devices. From our testing, these entries are not created for newly
added Bluetooth devices. Thus, we assume that they have been
created while these devices were running Android 9, but have
not been cleaned up with the Android 10 update. These entries
seem to be persistent, as unpairing the affected Bluetooth devices
does not remove them. Therefore, querying (previously) connected
Bluetooth devices is possible even on Android 10, partly bypassing
the BLUETOOTH normal permission usually required to query bonded
devices.

In addition to differing return values or fields, the mere exis-
tence of additional fields or methods can also identify vendors or
device models. For example, the Samsung devices in our evaluation
report a number of proprietary fields. These are marked with the
prefix SEM and are used to enable proprietary features. On the
Samsung Galaxy S9 running Android 10 with March 1 2020 security
updates, AndroPRINT was able to find 559 such additional fields.
Furthermore, our framework detected differences in the structure of
some content providers. For example, the settings content providers
on Samsung devices report which application is responsible for a
certain value, while Google devices do not.
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5 DISCUSSION

As our study confirms, Google has removed access to many unique
device identifiers with Android 10. However, the Android API still
offers a lot of information sources which can be combined to create
a fingerprint. Furthermore, our framework detected novel unique
identifiers revealing new threats in terms of fingerprinting: While
the core Android API offers ways to fingerprint users, which allows
for identifying individuals, it does not directly leak personal infor-
mation. As the case of Samsung shows, it is worth analysing vendor
customisations, since these can potentially reveal personal informa-
tion. Being able to silently query a user’s email address effectively
defeats the tight permission system of modern smartphone oper-
ating systems. This finding was unexpected, as it has far-fetching
consequences and therefore requires a broader investigation (see
below).

Due to the automatic nature of our approach AndroPRINT was
able to find more fingerprintable information sources than previ-
ously identified. Our evaluation focused on Android 10, due to the
privacy improvements added. Thus, our framework was not able
to detect differences which only occur between different Android
versions, such as version or API level differences. Unique identifiers,
as identified by Torres and Jonker [16], have subsequently been
removed from Android [3]. Our study was able to find new undoc-
umented identifiers on certain Android devices. We searched for
fingerprintable information sources which require no user consent
to be obtained, i.e., our study mainly detected sources which do
not need a permission or only a normal permission. Thus, all of
the identified methods, fields, and content provider can be queried
without user consent.

5.1 Limitations & Future Work

Our approach covers only a limited number of devices and cus-
tomisations. Therefore, the numbers we present are only a lower
estimate of the quantity of fingerprintable methods, fields, and
content providers in Android 10. As our study has shown, certain
vendor customisations are a particular threat in terms of finger-
printing. In order to fully quantify the consequences of vendor
customisations with respect to fingerprinting and privacy, addi-
tional studies need to be performed. Therefore, we plan to extend
our research to cover devices from other manufactures as well to
try and compare the impact of different vendors customisations.

Even though we parse and query all defined constants in the
Android API and predefine a number of different parameters, it
is not possible to invoke all methods and create all objects. Thus,
not all methods in the Android API could be invoked and neither
all fields queried. Due to time and memory constraints, we also
had to limit the number of objects which could be explored for
further methods and fields. While the fingerprintable fields and
return values of methods had different values in our experiments,
our study does not assess the stability and potential diversity of
these values over a longer period of time.

In the cleaning phase, values which differ between two identical
method calls or field evaluations are removed. As argued in Section
3.3.1, some of these values could still be used to fingerprint a user
given the meaning of these values is known. To deduce the meaning
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of these values without requiring extensive manual labour machine
learning could potentially be used.

The classification is based on a conservative approach. This
means that information sources which have been classified to detect
device and vendor differences may in fact also be modifiable by a
user.

5.2 Countermeasures

Several browser extensions have tried to limit the fingerprintability
of a browser by changing fingerprintable information sources, such
as the user agent. However, our analysis has shown that similar
information, such as the model or manufacturer of a device, can
be accessed via a plethora of implicit and explicit methods. Sim-
ilar to browser fingerprinting [4, 12], changing single methods,
content provider entries, or fields, such as the well known device
information in the android.os.Build class, may actually increase the
fingerprintability of a device.

As our study shows, a lot of the customisations done to a device
can be queried via the different settings content providers. Thus,
we propose to limit the access to these content providers using a
permission. As content providers already have the ability to regulate
access, this measure could be implemented using these existing
provisions. However, as our research has shown, a lot of the user
settings can also be accessed or inferred via other methods and
fields. Therefore, regulating these content providers is not a silver
bullet to stop fingerprinting. Nevertheless, we hope that beyond
limiting access to these content providers, AndroPRINT can help
finding methods and fields which should be restricted.

6 CONCLUSIONS

In this paper we presented AndroPRINT, which is a novel frame-
work designed to find fingerprintable methods, fields, and native
content providers on Android. AndroPRINT automates the arduous
task of searching for fingerprintable information sources. While
some information sources have been removed over time or now
require permissions to be accessed, there is still a vast amount
of methods, fields, and content providers that allow accessing or
inferring information about the user. This includes vendor and
device-specific information, operating system specific information,
and information that allows to infer user settings. Our automated
approach allowed us to go beyond what manual analysis can detect.
By dumping all available data we detected undocumented vendor
customisations which provide unique device and user identifiers
and even access to the users e-mail address.

Our approach can be used precautionary, i.e., one does not have
to wait until information sources are used in the wild for finger-
printing. Therefore, AndroPRINT makes it possible to detect fin-
gerprintable information sources before these can be used to track
users. When used in the development process of new or modi-
fied Android versions AndroPRINT can reveal leaking information
sources before these can be abused for fingerprinting.
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