
Ledger Attestation Demo

Stefan More

2022-12-12

Contents

1 Introduction 1
1.1 Demo Introduction . 2

2 Demo setup 2
2.1 Install dependencies: web3iaik 3
2.2 Install dependencies: DL nodes and Verifier 3
2.3 Deploy demo smart contract 3

3 Demo run 4
3.1 Start the DL Node wrappers 5
3.2 Start the Verifier API . 5
3.3 Call smart contract & retrieve attestation 6
3.4 Verify attestation . 7
3.5 Stop demo: kill the webservers 7

1 Introduction

A distributed ledger (DL) is an attractive system to decentralize storage and
computation and thus decentralize the trust. For example, in our Edu WoT
project, we use a DL to make available a Web of Trust as decentralized (root
of) trust store to (among other things) authenticate education credentials
and universities around the world. Since the project uses a smart contract
published on a DL as data store for the Web of Trust graph, the governance
of the system is only determined by the rules encoded in that contract. The
advantage of this approach is that no trust in a single organization is needed.

Retrieving of the web of trust graph is usually done by a verifying party
by communicating with one of the DL’s nodes. While this ensures freshness

1

of the data, this process requires a network connection to one of the DL’s
nodes. If the verifier is offline, it cannot reach the DL, and thus cannot
retrieve an authenticated copy of the web of trust.

The idea of this project is to enable a DL to issue attestations about the
state of smart contracts published on it. In specific, we propose to extend the
functionality of DL nodes in a way that users can request such attestations,
the nodes create this attestation based on the ledger blocks available to them,
and sign the attestations using a multi signature scheme. The user can then
combine the attestations of all nodes to one attestation, thereby proving
consent of the nodes about a certain state to an offline verifier.

1.1 Demo Introduction

In this demo we use the Leder Attestation (LA) tool to retrieve the attesta-
tion of some data stored on the DL. The relevant actors are the nodes of a
Distributed Ledger (DL), a User who wants to retrieve the attestation, and a
Verifier to whom the User wants to show the attestation in an offline setting.

In this demonstration we show the following:

1. installation of the LA tool dependencies

2. deployment of a demo smart contract

3. retrieve attestations from DL node(s) and aggregate them

4. verify the aggregated attestation

2 Demo setup

To initialize the demo, we first set some environment variables. Afterwards,
we continue by installing the required dependencies.

CODE="`pwd`/.."
DEMO="../../LAdemo"

mkdir -p $DEMO

echo "Code: $CODE"
echo "Demo: $DEMO"

Code: /home/smore/projects/lsa/demo/..
Demo: ../../LAdemo

2

2.1 Install dependencies: web3iaik

Before performing the demonstration process on your own, you need to setup
the modified web3.js library. web3 is the Ethereum JavaScript API used
to interact with nodes of the Ethereum ledger. To call smart contracts
functions the library offers a call method, which is used to invoke the re-
spective eth_call method on the DL’s API. We extend web3 by adding the
callSigned method. This method is used to invoke a DL’s eth_callSigned
method, and handles the attestation appended to the result.

Thus, we build our modified web3 library, and install it into the user’s
folder:

cp -r $CODE/web3iaik/ $DEMO
cd $DEMO/web3iaik

npm install lerna
npm run build

mkdir $DEMO/user && cd "$_"
npm init -y
npm install ../web3iaik

2.2 Install dependencies: DL nodes and Verifier

We install dependencies required by the Python webserver components (used
by DL nodes and the Verifier).

cd $CODE/DLnode
pip3 install -r requirements.txt

2.3 Deploy demo smart contract

Since our project is attesting the return value of a smart contract deployed
on a distributed ledger, we provide a demo smart contract deployed on an
Ethereum-based test ledger. You can also execute this demo by deploying
your own smart contract.

• Deploy the RevokedAccounts.sol contract on an Ethereum-based DL

– e.g., the tau1 test ledger on rpc.tau1.artis.network

– e.g., using https://remix.ethereum.org

3

https://remix.ethereum.org

• Address of our demo deployment: 0xbd1Eec567211e5Ee94ca92e84F6a2d7D21Ed25C0
on tau1

3 Demo run

Our demo consists of three components.
On the ledger side, we provide a webserver that provides a API com-

patible to the standard Ethereum JSON RPC API. The webserver wraps the
RPC API of a DL node, extending it to provide attestations of calls to smart
contract functions. Besides this extension, the wrapper does not change any
API functionality, it can therefore be used like the normal RPC API of an
Ethereum node. In the background, our API is calling the RPC API of a
(tau1) node. After receiving the result to the function call from the DL, the
wrapper is then signing the result using the private key of the DL node, thus
attesting its provenance. In a real-world deployment this wrapper API is
hosted on the DL node itself, thus inside the same trust boundary. While
this attestation acts as the proof by one node, to acquire an attestation by
the ledger itself, the user needs to retrieve attestation from many (or all) DL
nodes. Instead of increasing the trustworthiness of the attestation, this also
increases the likelihood that the attestation was signed by a DL node that
is trusted by an (previously unknown) offline verifier. After retrieving the
attestation of several DL nodes, the user can combine the attestation into
an aggregated attestation (by aggregating the signatures). In our demo, the
task of collecting multiple attestation and aggregating them is performed by
the first wrapped node called by the user, therefore the user does not need
to call all nodes themselves.

On the user side, we provide a demo client that uses our modified
web3 library to initialize and execute a call to a smart contract. The web3
library provides the same functional API established in the Ethereum world.
Instead of interacting with the RPC API of a DL node itself, the web3 library
instead interacts with our API wrapper. By doing so it not only receives the
result of the function call, but also an attestation of the result. In our demo,
this attestation is already an aggregated attestation jointly issued by a set
of DL nodes. The user can then store this attestation, and use it at a later
point, e.g., in an offline showing to a verifier.

On the verifier side, we also provide a webserver that provides an easy
to use verification API. This verification API is configured by the verifier by
specifying a set of trusted (DL node) keys as well as trusted smart contract
addresses and expected return values. To verify an attestation they retrieved

4

from an user, the verifier then simply calls the verification API with this
attestation (a JSON data structure). In this process, the verification API
checks if the attestation was indeed signed by the trusted keys, and also
verifies the (aggregated) signature of the attestation. After establishing trust
in the attestation, the API also checks if the function call represented in the
attestation was issued to the trusted smart contract, and whether the result
is as expected.

3.1 Start the DL Node wrappers

As a first step, we start the DL API webserver, which implements the at-
testation and aggregating functionality described above. In our demo, we
start two webservers, simulating a DL with two nodes. Those nodes are
aware of each other (via the provided configuration) which is necessary for
the confenience functionality that directly collects attestations of all nodes.

PIDFILE="$DEMO/demo.pid"
function startNodeAPI()
{

pass="node$1_passhprase"
port=$((4999 + $1))

echo "# Starting API for node $1 at port $port ..."
python3 $CODE/DLnode/api.py --port $port --key $pass --config $CODE/DLnode/config-api.json &
echo $! >> $PIDFILE

}

startNodeAPI 1
startNodeAPI 2

Starting API for node 1 at port 5000 ...
[1] 497451
Starting API for node 2 at port 5001 ...
[2] 497452

3.2 Start the Verifier API

As a second step, we also start the webserver of the verifier API. This tool
can be used by any verifier, also in an offline setting. In the configuration
we specify which DL nodes the verifier considers trusted. As a convenience
functionality in an online setting, the verifier API can directly fetch the

5

public keys of trusted DL nodes. Additionally, the configuration also defines
the trusted smart contract address and expected return value of a call to it.

function startVerifierAPI()
{

echo "# Starting API for verifier ..."
python3 $CODE/LAverifier/verifier.py --config $CODE/LAverifier/config-verifyer.json &

echo $! >> $PIDFILE
}
startVerifierAPI

Starting API for verifier ...
[1] 588358

3.3 Call smart contract & retrieve attestation

Next, we issue a call to the isRevoked function of the smart contract we
deployed. Since we use the callSigned() function (instead of the standard
call() function), we retrieve an attestation alongside the functions return
value. This attestation states which smart contract address was called (in the
to field), and also specifies the call (function name and parameters, encoded
in the data field) and return value (in result). Additionally, it (in the proof
block) the attestation contains the (aggregated) attestation signature, and
the public keys of the set of DL nodes which issued the attestation. This
attestation can then be saved into a wallet, and later used, e.g., in an offline
setting.

function runWeb3demo()
{

echo "# Executing $1 ..."

cp $CODE/demo/demo2.js $DEMO/user
cd $DEMO/user

node $1
}

runWeb3demo demo2.js

org_babel_sh_prompt> # Executing demo2.js ...
address 1 (0x11223344556677889900) revoked? -> true
address 2 (0x11223344556677889911) revoked? -> false

6

address 2, signed response:

{
"call":{

"id":2,
"jsonrpc":"2.0",
"method":"eth_callSigned",
"params":[

{
"data":"0x5154d6491122334455667788991100",
"to":"0xbd1eec567211e5ee94ca92e84f6a2d7d21ed25c0"

},
"latest"

]
},
"id":2,
"jsonrpc":"2.0",
"proof":{

"pubkeys":["a9923e8e5031360f7ff7ca3681194f94e9e5ec7b2388dd5aa055d2ab42d0091d8ad07383d0913b08a9b53ea4d4bf4af6", "a9923e8e5031360f7ff7ca3681194f94e9e5ec7b2388dd5aa055d2ab42d0091d8ad07383d0913b08a9b53ea4d4bf4af6"
],
"sig":"92d11b08c222e4b1bb712308eb9e759bc654f9123e88d45f25ee0ef5606fd4ad9d67968a621ccd1a3d2d9f13ee9f922812e866f8be964738a59c43ffd6a3137531d6ac8793b78402df7c01e6fefa0924ef8d93fc745b6d5b14eb6aedd44b8206"

},
"result":"0x00"

}

3.4 Verify attestation

Later, the user provides the attestation to an (offline) verifier. This verifier
uses the verification tool to verify the trustworthiness of the attestation (as
described above).

cd $CODE/demo
curl -X POST http://localhost:1234 -H "Content-Type: application/json" -d @demo-attestation.json

{"result":"Success: Contract accepted and result okay", "status":"True"}

3.5 Stop demo: kill the webservers

while read pid; do
process=`ps u | grep $pid | tr -s ' ' | cut -d ' ' -f 12-14`

7

myecho "# killing $process ..."
kill $pid

done <$PIDFILE

rm $PIDFILE

8

	Introduction
	Demo Introduction

	Demo setup
	Install dependencies: web3iaik
	Install dependencies: DL nodes and Verifier
	Deploy demo smart contract

	Demo run
	Start the DL Node wrappers
	Start the Verifier API
	Call smart contract & retrieve attestation
	Verify attestation
	Stop demo: kill the webservers

